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Abstract

Fast Methods for Static Hamilton-Jacobi Partial Differential Equations
by

Alexander Boris Vladimirsky
Doctor of Philosophy in Applied Mathematics

University of California at BERKELEY

Professor James A. Sethian, Chair

We develop a family of fast methods approximating the solution to a wide class of static
Hamilton-Jacobi partial differential equations. These partial differential equations are con-
sidered in the context of control-theoretic and front-propagation problems.

In general, to produce a numerical solution to such a problem, one has to solve
a large system of coupled non-linear discretized equations. Our techniques use partial
information about the characteristic directions to de-couple the system.

Previously known fast methods, available for isotropic problems, are discussed in
detail. We introduce a family of new Ordered Upwinding Methods (OUM) for general
(anisotropic) problems and prove convergence to the viscosity solution of the corresponding
Hamilton-Jacobi partial differential equation. The hybrid methods introduced here are
based on our analysis of the role played by anisotropy in the context of front propagation
and optimal trajectory problems.

The performance of the methods is analyzed and compared to that of several other
numerical approaches to these problems. Computational experiments are performed using

test problems from control theory, computational geometry and seismology.
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Chapter 1

Overview

Furthermore, for the purposes of this presentation we will
assume without loss of generality that /7 = /27 = 1.

From a Berkeley introductory

lecture on Fourier series.

1.1 Notation

For the reasons of notational clarity, most of the problems considered in this thesis
will be in R%. Nevertheless, since we will be considering different numerical methods both
on grids and on unstructured meshes, some notational abuse is almost unavoidable. We

will do our best to adhere to the following conventions:

e the bold fonts will be reserved for the vectors, vector functions (e.g., x,y'(t), etc),

and for the expression of author’s uttermost excitement;
e letters z, y, and z will refer to regular coordinate directions in R3;

o letter X will be used to refer to both the uniform Cartesian grids and the triangulated

meshes;

o letter h will denote the grid size of a uniform Cartesian grid and the diameter of a

triangulated mesh;

e u(x) will refer to the value of the solution to the PDE at the point x;



U(z) will refer to the value of the numerical solution to the PDE at the point (not

necessarily mesh or grid point) @;

in the discrete optimal trajectory (i.e., shortest path on a network) problems, U(x)

will also refer to the exact value of the solution at the node x;

V(x) will refer to the temporary solution values, which have to be computed before

obtaining the numerical solution U(x);

U; will sometimes be used to refer to the numerical solution value at the mesh point

Ti;

Ui; will sometimes be used to refer to the numerical solution value at the grid point

zij = (ih, jh);
u, and u, will be used as a shorter notation for a%u and %u;

the terms fast methods and single-pass methods will be used interchangeably

throughout this thesis;
the terms front and interface will be used as synonyms in Chapter 3;

the numerous quotes and epigraphs will have no notational significance whatsoever;
they are intended to prevent the reader from paying too much attention to the math-

ematical subject matter.



There go my people. I must find out

where they are going so I can lead them.

ALEXANDRE LEDRU-ROLLIN (1807-74)

FRENCH POLITICIAN

1.2 General goals

Consider the first order non-linear PDE !
G(Vu(z),u(z),z) =0 xz€QC R? (L.1)

with the boundary condition u(x) = g(x) given on 0f2. In general, smoothness in boundary
data does not guarantee that a smooth solution exists. For the Hamilton-Jacobi equations,
weak solutions can be formally introduced; a unique viscosity solution can be defined using
conditions on smooth test functions [16, 15]. In this thesis, we develop a family of fast
methods for approximating solutions for a wide class of static Hamilton-Jacobi PDEs.
Start with a mesh X covering the domain Q. Let U; = U(«;) be the numerical
solution at the mesh point x; € X. Denote the set of mesh points adjacent to x; as N(x;)
and the set of values adjacent to U; as NU(z;) = {Uj|zj € N(z;)}. Let G be a consistent

discretization of G such that one can write

G’(UZ-,NU(a:i),a:i) =0. (1.2)

If M is the total number of mesh points, then one needs to solve M coupled non-linear
equations simultaneously. One approach is to solve this non-linear system iteratively.

Our goal in this work is to introduce a set of techniques which we label as “single-
pass” algorithms. By this, we mean that we recalculate each U; at most r times, where r
depends only upon the equation 1.1 and the mesh structure, but not upon the diameter of

the mesh.

1.3 Characteristics and ordering updates

To construct one-pass algorithms with efficient update orderings, we utilize the

fact that the value of u(a) for the first order PDE depends only on the value of u along

'For the sake of notational clarity we restrict our discussion to R? ; all results can be restated for R"
and for meshes on manifolds.



the characteristic(s) passing through the point ®. If x;,,x;, € N(x;) are such that the
characteristic for the mesh point x; lies in the simplex x;x;, ;,, then it is useful to consider

an upwind discretization of the PDE:

G(Uianlangami) =0. (1.3)

This reduces the coupling in the system: U; depends only upon U;, and U;, and not on all
of the NU(xz;). A recursive construction allows one to build the entire dependency graph
for x;.

If two or more characteristics collide at the point x, the solution loses smoothness.
The entropy condition does not allow characteristics to be created at these collision points;
hence, if x; is far enough from these collision points, its dependency graph is actually a
tree.

If the characteristic directions of the PDE were a priori known, then the dependency—
ordering on the grid points would be known as well, leading to a fully de-coupled system.
Formally, this construction would lead to a O(M) method.

If the equation 1.1 is linear, the characteristic directions are known in advance,
and such methods can be indeed implemented. An interesting example of a fast algorithm
for the linear case is the “explicit finite element method” developed in 1973 for the neu-
tron transport equation [31]. A recent (massively parallel) algorithm for solving the linear
Boltzmann transport equation on unstructured grids can be found in [36].

Moreover, even if the information about the true characteristic directions is not
available, an assumption can be made sometimes based on the physical interpretation of
the solution. This assumption can then be used to construct an approximate version of
the equation 1.1, for which a fast method can be obtained more readily. For instance, an
assumption about the preferred direction can be used to build a parazial version of the
original PDE (see [51], for example).

In general, characteristic directions are not known in advance. Nonetheless, for
some of these problems, “single-pass” methods can be devised to determine the mesh point
ordering (and the characteristic directions) in the process of de-coupling the system. These
Ordered Upwinding Methods will have the complexity of O(M log M). Such methods are
particularly natural for the class of PDEs, for which the solution % is monotone increasing

along the characteristics.



1.4 Equations, properties, perspectives.

In this work, we consider the boundary value problem for the static Hamilton-

Jacobi equations of the form

H(Vu,z) = 1, x € QC R?

u(z) = q(z), =€ o, (14)

where Hamiltonian H is assumed to be Lipschitz-continuous, convex, and homogeneous of

degree 1 in the first argument:

H(Vu, ) = |Vul|F (:13 Hg—ZO (1.5)

for some function F. We will further assume that the function ¢ is also Lipschitz-continuous,

and that

0<F1 SF(m,p) SFQ,

g1 < q(x) < qo,

for all p and .

Even for arbitrarily smooth H, ¢, and 02, a smooth solution on 2 need not exist.
In general, there are infinitely many weak Lipschitz-continuous solutions, but the unique
viscosity solution can be defined using additional conditions on the smooth test functions
[16, 15]. We begin by examining two different ways of interpreting the Hamilton-Jacobi
PDE 1.4.

Chapter 2: Anisotropic min-time optimal trajectory problems.
In these problems, the speed of motion depends not only on position, but also on direction.
The control-theoretic value function u is the viscosity solution of the static Hamilton-Jacobi-

Bellman equation

maxges, {(Vu(z) - (—a))f(z,a)} =1, €,

1.6
u(z) = q(a), z € 00, (1.6)

Here, a is the unit vector determining the direction of motion, f(x, a) is the speed of motion
in the direction a starting from the point € €, and g() is the time-penalty for exiting the
domain at the point & € 9. The maximizer a corresponds to the characteristic direction

for the point .



Chapter 3: Anisotropic front expansion (contraction) problems.
In these problems, F'(n,) is interpreted as the speed of the front in the normal direction

n, and 0f) - as the initial position of the front.

|Vl F (a: Hg—g”) =1, zeQ,
u(x) =0, x € 00.

The anisotropy is the result of F’s dependence on n. The level sets of the viscosity solution
u correspond to the positions of the front at different times. The described numerical

methods can be used only if the resulting Hamiltonian is convex.

If the speed functions F' and f only depend upon their first argument, both forms
of the Hamilton-Jacobi PDE reduce to the Eikonal equation

Vu(@)|| = K(z), (1.7)

where K(x) = % = % The Eikonal equation possesses a very useful property:
its characteristics coincide with the gradient lines of its viscosity solution u. This property is
the foundation for two different “single-pass” methods for an Eikonal equation: Tsitsiklis’
Algorithm (1995) and Sethian’s Fast Marching Method (1996). These two methods are
discussed in detail, since our new methods can be considered as a generalization of these
for the anisotropic case. Tsitsiklis [53] considered the Eikonal equation primarily in the
context of isotropic optimal trajectory problem and used a first-order control-theoretic
upwinding discretization (section 2.2.10). Sethian [43] considered the Eikonal equation
primarily in the context of isotropic front expansion problem and used a first-order finite
difference upwinding discretization (section 3.4.2). In section 3.4.4 we discuss extensions of
the Fast Marching Method using the second-order finite difference upwinding operators on
the Cartesian grid and on unstructured meshes.

In Chapter 4, we then turn our attention to constructing fast methods for the
general anisotropic case. We accomplish this by using two properties of the unique viscosity

solution:

e The viscosity solution u(x) is strictly increasing along the characteristics of the PDE

1.4.

e We can derive a precise upper bound on the maximum angle between the characteristic

and the gradient of w.



An Ordered Upwinding Method based on a control-theoretic discretization is introduced
in section 4.3. This single-pass method has a computational complexity of O(%M log M),
and its convergence to the viscosity solution is proven in Chapter 5.

In Chapter 6, we explore the relationship between the two interpretations of the
Hamilton-Jacobi PDE 1.4. Our analysis of the role played by anisotropy in both of these
contexts is the basis for the hybrid Ordered Upwinding Methods (section 6.2). These single-
pass methods are based on finite difference approximations and have the same computational
complexity of O(%M log M).

Finally, we analyse the efficiency of the new methods (Chapter 7) and consider
several anisotropic test problems from optimal control, computational geometry, and seis-

mology. (Chapter 8).



Chapter 2

Control-Theoretic Perspective

Immense power is acquired by assuring
yourself in your secret reveries that you

were born to control affairs.

ANDREW CARNEGIE (1835 - 1919) US

INDUSTRIALIST, PHILANTHROPIST

The general structure of all of the control-theoretic models is the same:
e an evolving system, whose evolution depends on some controlled parameter;

e the cost associated with a particular way of evolving the system, which depends,
among other things, on the system’s state, and on the control used to direct the

system to that state;

e the ultimate goal of finding the way to optimally control the system (so that the

resulting cost is minimized).

We will concentrate on the deterministic control problems (i.e., the behavior of the system
is fully specified by the chosen control) with the ezit state termination criterion: the process
is terminated when the system reaches one of the predefined exit states, and the exit penalty
associated with that exit state is added to the overall cost of the process.

In this chapter we discuss several well known discrete and continuous control-
theoretic models. The classical discussion of many of those can be found in [9] and [8].

Our exposition is intended to provide a self-contained introduction to the principles of the



dynamic programming with the emphasis on the connections to the PDE perspective. The
previously available numerical methods described here are the foundation for building our

new single-pass methods (chapters 4 and 6) for solving the static Hamilton-Jacobi PDE 1.4.

2.1 Discrete optimal trajectory problem

We begin by considering the “shortest path on the network” problem extensively
studied in computer science and in operations research. Numerous algorithms are available
for this problem (e.g., see [3] for a catalogue of available algorithms), but Dijkstra’s method
[18] is probably most widely known for the specific subclass of problems in which the network
is sparsely connected and all the arc-costs are positive. That method will be considered as

a prototype for all the single-pass numerical methods described in this dissertation.

More than any time in history mankind faces a crossroads.
One path leads to despair and utter hopelessness, the other to total extinction.

Let us pray that we have the wisdom to choose correctly.

Wooby ALLEN, US COMEDIAN, ACTOR, FILM DIRECTOR

2.1.1 Shortest paths and value function

Consider a discrete network of nodes X = {x1,...,xzar}. The vehicle starts
somewhere in the network and travels from node to node until it reaches one of the exit
nodes € € Q C X. Thus, every vehicle’s trajectory is just a finite sequence of nodes
(y1,...,yr) such that yp € Q for £ < r and y, € Q. There is a positive cost associated
with every transition from node to node: it costs K(x;,zj) = K;; > 0 to pass from x; to
xj. The cost K;; is assumed to be infinite if in the network there is no link from x; to x;.
For every exit node & € @ there is a cost ¢(x) < oo for exiting the network at that point.

Thus, the total cost of a trajectory (yi,...,yr) starting from the point y; is

Cost(ys, .., yr) = ¥ K(yjyjs1) + a(yr). (2.1)
j=1

Our goal is to find the optimal (cheapest) trajectory for each node z € X\Q.
Remark 2.1.1. For the purposes of our presentation, we are mostly interested in the
situation, when X is a grid or (more generally) an unstructured mesh: each x is only

connected to a set of its neighbors, which is assumed to be a small subset of X.
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The key idea of dynamic programming [8, 9] is to solve this problem for all of the
nodes at once and, instead of searching for a particular optimal trajectory, to derive an
equation for the value function U(x), defined as

U(.’.U) = min all the paths COSt(iB, . ) T € X\Q,
starting at & (2‘2)

Ulz) = q(z) TEQ.
By this definition, the value function U(x) is the minimum cost for exiting the network if

we have started at the node x.

2.1.2 Bellman’s optimality principle

Bellman’s optimality principle [8] is, in effect, a way to derive such an equation for
U(x). Suppose, y1 € X\Q. Then, by definition of the value function, there has to exist some
optimal trajectory (yi1,y2,...,Yr) such that U(yy) = Cost(y1,y2,...,yr). The optimality
principle merely says that if yo € X\@Q, then the trajectory (ya,...,y,) will also be optimal
for the node yp. Otherwise, there would exist some other trajectory (y2,21,...,2p) such
that

Cost(yz, ..., yr) > Cost(yz,21,..., 2p),
and that would imply
U(y1) > Cost(y1, Y2, 21,-- -, 2p),

which is a contradiction. If we define the set of ’s neighbors
N(z)={y € X | K(z,y) < oo},
then we can write Bellman’s optimality principle in the form of a local equation for U(x)

U(z) = min {K(x,y)+U(y)}, for Ve € X\Q. (2.3)
YeN(T)

Remark 2.1.2. Of course, we could substitute X instead of N(z) and the equation would
still be true. We are using this notation to emphasize that we imagine X to be some mesh

and, thus, N () is much smaller.

Equation 2.3 is non-linear and it has to hold for each node in X\ Q. Thus, if there
are M such nodes, we have to solve a coupled system of M non-linear equations. Solving
this entire system simultaneously is expensive; fortunately, as Dijkstra’s method shows, it

is also completely unnecessary.
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2.1.3 Dijkstra’s method

The first step towards building this efficient method is the following simple obser-

vation.

Observation 2.1.3. If (y1,y2,...,yr) is an optimal trajectory for y;, then U(yy) >
U(y2) > ... > Ulyy).

Remark 2.1.4. This observation obviously is correct only when all the transition costs
K (x;, x;) are positive. Some analogous property of the model will be required for all of the

fast methods described in this thesis.

If we define N_(x) = {y € N(x) | U(y) < U(x)}, then the observation means
that Bellman’s optimality principle (2.3) can be rewritten as

U(x) = yeIJI\}i_I%a:) {K(z,y)+U(y)}, forVee X\Q. (2.4)

This will essentially de-couple the system, for if y € N_(x), then « ¢ N_(y), and vice
versa. Thus, if someone gave us the list of the nodes sorted by the value of U, we could
solve the equations 2.3 one by one, producing the method with an overall complexity of
O(M).

Of course, this argument has an element of a trick to it: the equation 2.4 is hard
to interpret, since before we know U(y) and U(z) it is not clear if y € N_(x). We cannot
predict the ordering of all of € X\Q before we actually compute U(x). But we can find

the ordering of X one node at a time:

Observation 2.1.5. Suppose that the (as-of-yet-unknown) ordering on X is U(xz1) <
U(xzz) < ... < U(xpm) and imagine that for some i < M the U(x;)’s are somehow known

for all j <. For every k > ¢ we define the function
V(@) = min{K (zx, z;) + Ulz;)}.

By the optimality principle, we observe that V(xzy) > U(xg) for all k > i. Furthermore, if
Z is such that Yk > ¢,V (Z) < V(2g), then

. U(z) = V(@)

e if k> i then U(Z) < U(xyg).
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Dijkstra’s method [18] is based on the latter observation and works as follows:

All the nodes are divided into three classes: Far (no information about the correct value
of U is known), Accepted (the correct value of U has been computed), and Considered
(adjacent to Accepted), for which V' has already been computed, but it is still unclear if
V =U. For every Considered & we define the set NF(x) = {y € N(x) |y is Accepted}.

1. Start with all the nodes in Far.
2. Move the exit nodes (y € Q) to Accepted (U(y) = q(y)).

3. Move all the nodes & adjacent to the boundary into Considered and evaluate the

tentative values

V() = yergli?r(lw) {K(z,y)+U(y)}. (2.5)

4. Find the node & with the smallest value of V among all the C'onsidered.
5. Move Z to Accepted (U(Z) =V (Z)).

6. Move the Far nodes adjacent to & (i.e., z € N(&)) into Considered.

7. Re-evaluate V for all the Considered = adjacent to Z (i.e., x € N(&))

V() :=min{V(z), K(z,Z) + U(Z)} . (2.6)
8. If Considered is not empty then go to 4.

The described algorithm has the computational complexity of O(M log(M)); the
factor of log(M) reflects the necessity to maintain a sorted list of the Considered values

V(z;) to determine the next Accepted node!.

!This variant of Dijkstra’s method is often referred to as a heap-sort Dijkstra’s method since its implemen-
tation requires a use of binary heap, d-heap, or Fibonacci heap to maintain the ordering of the Considered
nodes efficiently[3].

The complexity estimate for the densely connected network would be O(M? log(M)), but for our case, when
X is a grid or a mesh, the precise complexity estimate is O(rM log(M)), where r is the maximum number
of nodes connected to a single node in X.
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‘Would you tell me, please, which way I ought to go from here?’

‘That depends a good deal on where you want to get to,” said the Cat.

‘T don’t much care where—’ said Alice.

‘Then it doesn’t matter which way you go,’ said the Cat.

‘—so long as I get SOMEWHERE,” Alice added as an explanation.

‘Oh, you're sure to do that,” said the Cat, ‘if you only walk long enough.’

CHARLES LUTWIDGE DODGSON (1832-98)

BRITISH MATHEMATICIAN, WRITER, AND POET

2.2 Continuous optimal trajectory problem

Consider a problem of finding an optimal trajectory for a vehicle moving with a

unit speed in the domain  C R?:

y(t) = a(t),
y(0) = z €, (2.7)

where y(t) is the position of the vehicle at time t, S; = {a € R?| ||a]| = 1} is the set
of admissible control values, and A = {a : Ry — Si | a(-) is measurable} is the set of
admissible controls.

We are interested in studying y(¢) only while the vehicle remains inside €, i.e.,
until the exit time

T(z,a(-)) =inf{t € Ry o|y(t) € 00Q}.

Given a running cost function K : (2 x S1) — R, and an exit cost ¢ : 9Q — R, o,

we can define the total cost of using control a(-) starting from the point & € Q:

T(x,a(-)
Cost(w,a(-))Z/O K(y(s),a(s))ds + q(y(T(z,a(")))). (2.8)

Unless otherwise explicitly specified, we will assume in all of the following chapters
that both K and ¢ are Lipschitz-continuous and that there exist constants K, Ka, q1, ¢o
such that

0< Ky <K(z,a) <Ky <0 for V& € Q and Va € Sy;

0<q <q(x)<g<oo for Vo e d. (2.9)



14

Remark 2.2.1.

1. K1 > 0 is a “no free lunch” assumption: it always costs something to go in any

direction.

2. K2 < oo means that there are no infinitely expensive states of the system or directions

of motion.

3. We will see that the assumptions on the bounds of the running cost K are fundamen-

tally important for the fast methods under consideration.

4. The computational complexity and the speed of convergence of the general fast meth-

= K>
=5

ods (chapters 4 and 6) will depend upon the anisotropy coefficient T
As in the discrete case, the key idea of dynamic programming [8] is to define the value
function u(x) such that
u(zx) = infg(.) Cost(z, a(- x € Q\01),
(z) a(-) Cost(z, a(-)) \ (2.10)
u(x) = q(x) x € 01},

Remark 2.2.2.

1. The infimum in the above definition is due to the fact that there are infinitely many
possible trajectories and the optimal control a(-) in general does not have to exist;
therefore, when proving properties of the value function v we should instead resort to

using the e-suboptimal controls a(-) such that
Cost(z,a(-)) < u(x) +e. (2.11)

By the definition of the value function, such an e-suboptimal control exists for all

x e Qande>0.

2. The Lipschitz-continuity of K and ¢ is not really needed to define the value func-
tion. Most of the properties shown for u in the next two sections still hold, but the

connection to Hamilton-Jacobi-Bellman PDEs (section 2.2.3) becomes problematic.
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The art of doing mathematics consists in finding that

special case which contains all the germs of generality.

DaAvID HILBERT (1862-1943)

Example 2.2.3. Consider the problem, in which K(x,a) = 1 for all x € Q\09, a € S,
and g(x) =0 for all x € 012. In that case Cost(z,a(-)) = T(z,a(-)) and, therefore, u(x) is
the length of the shortest path from a to the boundary 0f2.

As we will quickly show, this very simple special case most definitely does not contain “all
the germs of generality”, but it is, nevertheless, a useful test problem for the initial testing
of the numerical methods. Solving this simple problem on manifolds will also prove a useful
alternative to solving much more complicated equations in the plane (see section 3.5).
Some of the properties of the general problem can be seen even in this simple case; for
instance, Figure 2.1 shows that the value function does not have to be smooth even when

K | g and 09 are perfectly “nice”; nor does the optimal trajectory have to be unique.

Figure 2.1: The “distance from the boundary” equation: |[Vu(z)|| =1 on Q, u(x) = 0 on 9. Level sets
of the distance from the boundary function for two different domains. The shocks (dashed lines on the

figure) are the collections of points, for which the closest point on the boundary is not unique.

2.2.1 Bellman’s optimality principle.

The optimality principle for the continuous case is quite similar to what we already

have seen in section 2.1.2.
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Lemma 2.2.4 (Optimality Principle). Let d(x) be the minimum distance to the bound-
ary 0. Then for every point & € Q\OQ and for any T < d(x),

{/ K(y(s), a(s))ds + u(y(r ))}. (2.12)

Proof. Choose an arbitrary & € Q\0Q and 7 < d(x). This choice of 7 ensures that if
y(0) =  then y(7) € Q\0S for any choice of control a(-). Suppose a;(-) is an e-suboptimal
control for x, and let 1 = y(7).

Claim: b(t) = a1(t + 7) is an e-suboptimal control for 1. Indeed, if that were not the

case, then there would exist some control by (-) such that
Cost(z1,b1(-)) + € < Cost(x1, b(-)),

which would imply that for the control

as(t) = ai(t) t €][0,7),
bi(t—7) t > 71

the cost Cost(x,az2(-)) < Cost(xz,a1(-)) — e < u(x), which is impossible. Thus,
u(x) + € > Cost(z,a1(- / K(y (s))ds + u(x1),
where a1 (-) and the corresponding @ can be found for an arbitrarily small €. So,

w(@ >1nf{/ K(y(s),a(s))ds + u(y(r ))}.

The remaining half of the proof is even easier.
Choose an arbitrary control a1 (-) set y(0) =  and let £; = y(7). Choose an e-suboptimal

control b(-) for the point ;. Define the control
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and observe that

u(xz) < Cost(z,az(-)) = / K(y(s),a(s))ds + Cost(x1,b(-)) <

< /K a(s))ds + u(zy) + e

Since b(-) can be chosen so that the above holds for an arbitrarily small €, we see that

/ K(y(s).a(s))ds + u(y(r)),

for any control a(-). O

Remark 2.2.5. An analogous optimality principle can be proven without restricting 7 to
be less than d(z). The infimum, however, would be taken over the set of all controls a(-)

such that y(7) is still inside Q.

Remark 2.2.6. To simplify the presentation in the rest of this chapter, we will some-
what loosely refer to the optimal trajectories (i.e., trajectories corresponding to the optimal
controls). If such optimal controls do not exist, the same (or ever-so-slightly more care-
fully stated) properties can be formulated and proven for the e-suboptimal controls and

trajectories (as in the above proof).

2.2.2 Properties of the value function.

Several properties of the value function immediately follow from the definition and

from the optimality principle.

Lemma 2.2.7 (Lipschitz-continuity). If  is conver and 1,2 € Q\OQ then

lu(z1) — u(z2)| < Kal®1 — 2|

Proof. Let 7 = ||l&1 — x2|| and consider the control a(t) = @ By the optimality
principle,

u(@1) / K(y(s), a(s))ds + u(@s) < Kollws — zal] + u(@a).
Similarly, we can show that

u(w) / K(y(s), —a(s))ds + uler) < Kallwr — @a]l + ules).
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“The shortest path between two points is always under construction.”

Anonymous Wisdom

Remark 2.2.8. The convexity of (2 is required to ensure that the straight line segment
xyx2 lies inside €2 and, thus, is a valid trajectory. A similar statement can be proven without
the convexity assumption if @1, z2 are far enough from 99 or if ||z; — @2|| is replaced by

the length of the shortest path from &7 to &2 inside the domain.

Lemma 2.2.9 (Boundedness). If ¢ € Q\0Q then

Kid(z) + ¢1 < u(x) < Kod(x) + qo.

Proof. Let & be a point on 9% such that || — x| = d(x). Let 7 = || — || and consider

the control a(t) = E:T;a: By the definition of the value function,

u(z) < /OTK(y(s),a(s))ds + u(&) < d(x)Ks + ¢o.

On the other hand, if @1(+) is an optimal control for , then

T(x,a1(-))
u(z) = / K(y(s),a1(s))ds + u(y(T(z,a1())) > Kid(@) + q1.
]

Lemma 2.2.10. If y(t) = a(t) is an optimal trajectory for a point x (i.e., y(0) = x and
u(x) = Cost(x,a(-))), then the function u(y(t)) is strictly decreasing for t € [0,T(x, a(-))].

Proof. Follows directly from the proof of the optimality criterion and the fact that K (z,a) >
K > 0. U

Lemma 2.2.11. Consider a point & € Q\0S2. Then, for any constant C such that qa <
C < u(&), the optimal trajectory for & will intersect the level set u(x) = C at some point

x. If © is distance di away from that level set, then

- Ky
—z|| <d—=. 2.13
o -2l < i 12 (213
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In America, it’s not how much an item costs, it’s how much you save.

Provably Optimal Trajectories in USA € Abroad, paperback edition.

Proof. Let a(-) be an optimal control for Z. The intersection point & = y(7) exists because
of the continuity of the value function and of the optimal trajectory: u(Z) > C > qo >
u(y(T(z,a(-)))).

Therefore,

u(Z) = /OT K(y(s),a(s))ds + u(@) > ||z — || K1 + C.

There also exists some point & on the level set such that ||& — &|| = d;. Consider a control
a(t) = af:d;la_: By the optimality principle,
di
u(Z) < K(y(s),a1(s))ds + u() < d1 K + C.
0

Thus, |2 — Z| < d1%. O

Lemma 2.2.12. Consider an unstructured (triangulated) mesh X of diameter h on .
Consider a simple closed curve I' C Q\0Q with the property that for any point © on T, there
exists a mesh point & inside I' such that || — &|| < h. Suppose a mesh point & is such that
w(®) < ul(xy) for all the mesh points x; € X inside T'. The optimal trajectory for & will
intersect I' at some point & such that

K
1Z — z| Shﬁ. (2.14)

Remark 2.2.13. The condition “for Vo € I' there exists some nearby mesh point & inside

¢

I'” is the requirement that the curve I' has to be “well-resolved” by X.

Proof. Let a(-) be an optimal control for Z. The intersection point & = y(7) exists because

of the continuity of I' and of the optimal trajectory. Therefore,

u(@) = / " K(y(s), a(s))ds + u(@) > |& - 2|Ky + ul@).

Let & be a mesh point such that ||& —&|| = 71 < h. Consider a control a1 (t) = "B;IQA’ Then,

by the optimality principle,
T1
u(#) g/ K(y(s), a1(s))ds + u(@) < hK» + u(@).
0

To complete the proof, we recall that u(Z) < u(&). O



20

2.2.3 Hamilton-Jacobi-Bellman PDE.

By analogy with the discrete case, we would now like to use Bellman’s optimality
principle to derive an equation for the value function. The following “naive” derivation
will be based on the assumption that u(x) is smooth in the neighborhood of . We know
already that generally this does not have to be the case (see Figure 2.1), but we will proceed
with this formal derivation anyway.

For some small 7 we can rewrite the optimality principle as follows:

w@) = wt{ [ Kwe)a)s + i)}

= in ' T),a T))ds + u(z + 7Ta 72
= it { ["K 0+ 0()a0) + 0@ ds + u(e +7a(0) + 0(r) }

= min {rK(z.a) + u(@ +7a) + O(*)}

= éniél T{K(z,a) + (Vu(z) -a)+ O(1)} + u(x).
€51
Remark 2.2.14. Note that the infimum was replaced by the minimum as we switched from
a(-) € Ato a € S;. This is due to the fact that the optimal control/trajectory might not

exist, but the locally optimal control value/direction is always well defined.

Since the above should formally hold for all small 7, we see that u(2) should satisfy

the following PDE:

minges, { K(x,a) + Vu(x) -a} =0, x €

u(z) = q(z), = € ON. (2.15)

This equation is known as a Hamilton-Jacobi-Bellman PDE. If we denote the
Hamiltonian H(p, ) = minges, { K (z,a)+p-a}+1, we can write it in the form H(Vu, z) =

1, which was used in section 1.4. We observe, however, that
e H is not convex in the first argument (it is actually concave);

e H is not homogeneous of degree one in the first argument.

This H does not seem to be similar to the class of Hamiltonians specified in section 1.4,
but in section 2.2.5 we will see that it is equivalent to another Hamilton-Jacobi PDE, which

belongs to that class.

Remark 2.2.15. If we formally solve the characteristic ODEs for the equation 2.15, we
will find that the direction of the characteristic @ € S; for the point & € Q\0N is, in fact,
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the minimizer and K(z,a) + Vu(x) -a = 0. Thus, the characteristic directions of the
PDE 2.15 are exactly the optimal control values and the characteristic lines are the optimal

trajectories for the control problem.

No man means all he says, and yet very few say all they

mean, for words are slippery and thought is viscous.

HENRY BROOKS ADAMS (1838 - 1918)

US HISTORIAN, AUTHOR

The smooth solution to equation 2.15 might not exist even for smooth K, ¢, and
09). Generally it admits infinitely many weak solutions, but the unique wviscosity solution

can be defined using the following conditions on smooth test functions [16, 15].

A bounded, uniformly continuous function w« is the viscosity solution of equation
(2.15) if the following holds for each ¢ € C2°(92) :
(i) if w — ¢ has a local maximum at g € € then

Crlrgg {Vo(xo)-a+ K(xzg,a)} > 0; (2.16)

(ii) if u — ¢ has a local minimum at g € © then
émgl {Vé(zo) - a+ K(zo,a)} <0; (2.17)
€
Remark 2.2.16. As proven in [16, 15], there exists a unique viscosity solution to the
equation 2.15. That solution is Lipschitz-continuous and, therefore, differentiable almost
everywhere in ) (see [19], for example). If Vu(xzg) is defined then the function is also a
“classical solution” of the PDE, namely
K(xg, \Y% -a} =0.
Din {K(xo,a) + Vu(wo) - a}
As proven in [16, 15, 14, 12]2, Bellman’s optimality principle can be used to rigorously
show that the value function u of the optimal trajectory problem satisfies the above test
conditions and is the unique wviscosity solution of the equation 2.15. We will use the above

definition to prove the convergence of our general method in Chapter 5.

2The control-theoretic problems discussed in these papers are slightly different. They consider in-
finite hOI‘lZOl’l or exit time problems with the time discounted running costs, e.g., Cost(x,a(:)) =
I e *K(y(s),a(s))ds. Thus, the resulting PDE is also slightly different, but Kruzhkov’s transform can
be used to obtaln the mapping from one to another. See [14], [4], for example.
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Remark 2.2.17. For all the technical glamour, the above test conditions are supposed to
regulate how the solution behaves at the shocks (wherever Vu is undefined). Whenever Vu
is well defined, the local max/min conditions would force the test function to have V¢ = Vu;
thus, the equality would be attained in the test inequalities 2.17 and 2.16. These inequalities
specify a criterion similar to the entropy condition for the hyperbolic conservation laws: the
characteristics can run into shock, but characteristics never emanate from the shock (see
[19], for example).

The term wviscosity solution refers to the fact that v can also be obtained by the method of
vanishing viscosity, as a uniform limit:

u(x) = lim u. (),
e—0

where u, is the smooth and unique solution of the regularized equation
H(Vus(x),x) =1+ eAu.(x).

Example 2.2.18 (Defining viscosity solution for the distance function). The smooth
test functions define which one of the weak Lipschitz-continuous solutions on Figure 2.2
should be chosen as the viscosity solution of the equation |u/(z)| = 1 with the boundary
conditions u(0) = u(1) = 0. (From the control-theoretic perspective the answer is obvious
since we would want to recover the distance function from the boundary on the interval

[0, 1]; see the derivation in section 2.2.4.)

2.2.4 Eikonal equation: the glory of isotropy.

We will now consider a very important special case, in which the running cost

function K is isotropic, i.e., depends only on the position of the vehicle. In that case,

0 = Crllrggl{K(a:) + Vu(x) -a}
= K(z)+ éréiéll{Vu(w) -a}

= K(z) - [Vu()|
We have derived the Eikonal equation:

Vu(z)|| = K (),
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Figure 2.2: Two weak solutions to the distance equation on an interval: |u'(z)] = 1forz €

(0,1), and u(0) = u(l) = 0. Smooth test functions (dotted lines) are used to determine the viscosity
solution. The second weak solution fails the test at the point o = 0.3 : if ¢(x) = .1 is the test function,

then (v — ¢)(x) has a strict local minimum at xo, and the inequality 2.17 requires |¢'(zo)| > 1.

which is a significantly more general class than our previous example: the distance function
is obtained when K (x) = 1. The Eikonal equation describes a multitude of isotropic pro-
cesses and has applications in geometric optics, computational geometry, robotic navigation,
photolithography, computer vision, seismology and many other application domains.

We would like to emphasize one particular property of the Eikonal equations. In

—VUu
IVl

the above derivation, the minimizer a = . Thus, the gradient lines coincide with the

characteristics.

Property 2.2.19 (Causality). If Vu(x) is defined and xx1x2 is a sufficiently small acute

simplezx, which contains the characteristic for x, then u(x) > max{u(xy),u(x2)}.

This is the key property for understanding and enhancing the fast methods de-
scribed in sections 2.2.10 and 3.4.2. Each of these two methods is based on an observation

that some numerical scheme mimics the above property of the PDE.
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Figure 2.3: The characteristics and the gradient lines are the same for the Eikonal equation. If the
characteristic lies in the simplex x;®;, i, then the gradient Vu(z;) points from that simplex. The dotted
line shows the characteristic passing through the point «;, and the dash-dotted lines show the level sets of

the viscosity solution u.

While we are postponing life speeds up.

Lucius ANNAEUS SENECA (4BC-65AD)

ROMAN PHILOSOPHER, STATESMAN

2.2.5 Equivalent control problem: constant cost vs. constant speed

So far we have described a problem of finding an optimal trajectory for a vehicle
moving with a unit speed inside the domain € (we have allowed the vehicle’s running cost K
to depend upon the choice of the direction and upon the current location in the domain). We
will now show that this problem is in some sense equivalent to finding an optimal trajectory
for a vehicle moving in the same domain with changing speed, but constant running cost.
The idea is to re-parameterize each trajectory so that the new speed is inversely proportional
to the running cost.

Consider a vehicle such that its position in 2 is given by

(2.18)

z(0) =z €Q, (2.19)
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where r = r(t) = f(f K(y(s),a(s))ds. Then

K(y(t),a(t)) —a(t) = 0. (2.20)

Thus, y(t) = z(r). We note that r'(¢) is a strictly positive function; thus, r(¢) is

invertible, and we can rewrite equation (2.18) as

a(r)

z'(r) = f(a(r))a(r) = K(z(r).a(m)’

where @(-) is such that a(r) = a(t(r)). If we consider the latter problem with running cost

(2.21)

equal 1 and with the same exit cost ¢, we see that the cost of using the control a() is

r(T(x,a(-)))
Costy (z,a() = /0 ds + qlz(r(T(z,a("))))
= 7(T(z,a(") + q(y(T(z,a(")))
T(x,a(-))
_ / K(y(s), a(s))ds + ¢((T(z, a(-)))
= Cost(z,a(-)). (2.22)

We see that

u(x) = a(i~r)1£A Cost(x,a(-)) = c‘z(i-r)lgA Costy(z,a(-)), (2.23)

i.e., that u(a) is also the value function corresponding to the control problem (2.21). As such

it has to be the unique viscosity solution of the corresponding Hamilton—Jacobi-Bellman

equation
min {Vu(z) - m} +1=min{(Vu(z)-a)f(z,a)} +1=0, =zeQ (224

with the same boundary condition u(x) = g(x) for € 0.

Remark 2.2.20. Note that if we choose a Hamiltonian H = — mingeg, {(p-a)f(z,a)} =
maxges, {(p - (—a))f(x,a)}, then the above Hamilton-Jacobi-Bellman equation can be
rewritten in the familiar form H(Vu,x) = 1. Moreover, this Hamiltonian is convex and
homogeneous of degree one in the first argument; thus, it belongs to the class of problems

described in section 1.4.
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Remark 2.2.21. Since the equations 2.15 and 2.24 were shown to be equivalent, we will
switch to whichever language is more convenient for the particular application. By definition
f(x,a) = ﬁ thus, we know that 0 < K; ' = f; < f < fo = K;' and the anisotropy

coefficient T = = ﬁ

Remark 2.2.22. The control-theoretic problem defined by the equations 2.21 and 2.24
is often referred to as a min-time optimal trajectory problem, since the total running cost
associated with a particular control is precisely the time it takes to trace the corresponding

trajectory.

2.2.6 Modified definition of viscosity solution

According to the traditional definition (see [15]), a bounded, uniformly continuous
function w is the viscosity solution of equation (2.24) if the following holds for each ¢ €
() :

(i) if u — ¢ has a local maximum at g € € then

Lain {Vep(wo) - FH12>0; (2.25)

_a
K(.’Bo,a)

(ii) if u — ¢ has a local minimum at &g € © then

in{V e 1 <0; 2.26
Crl%lsr'll{ ¢($0) K(.’B(),a)} +1<0; ( )
Define Sf”‘r ={a €S |a Vo) < —||Vo(x )|| L}. It is easy to see that using S¢’
instead of Sy in the inequalities (2.26) and (2.25) above, we will get an equivalent definition.

We first observe that, since K > K; > 0, if the minimum is attained for some

a = aj then (a; - Vé(zo)) < 0. Thus,

ai ai
R S ket 35
V(o) frrpeay > Volao) -

Let b = ||V¢>(£13ai))|)| Since @y is the minimizer, we have

a b — [V (o)l
Vo(zo) - < V¢(xo) -
Ymo) Kaan = V) Koh) < T K
Therefore,

a1 - Vo(zo) < —||V¢(a:0)||—.
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Remark 2.2.23. We have just established a bound on the angle between the characteristic
and the gradient line. If the gradient Vu(xg) exists then Vu(xg) = Vp(xp). Therefore,

K
a1+ Vulwo) < —|[Vu(zo) | -

If 7y is the angle between Vu(zg) and (—a1) then

This result is truly important for our presentation, since it will serve as a basis for building

the single-pass methods introduced in chapters 4 and 6.

2.2.7 Numerical methods

The central issues of this thesis are the applicability, efficiency and convergence
properties of various numerical methods for a wide class of static Hamilton-Jacobi PDEs
(defined in section 1.4). As shown in the preceding sections, the Hamilton-Jacobi-Bellman
PDE 2.24 belongs to that class®. The unique viscosity solution of that PDE is precisely the
value function u(x) for the corresponding optimal trajectory problem.

In this section we survey three first-order methods, which are typical in the context of such

control-theoretic problems. We observe that

e Dijkstra’s method on the approximating grid is single-pass, but, as the grid is

refined, the obtained numerical solution U(x) does not converge to u(x);

¢ Gonzales-Rofman method yields a numerical solution U(x) converging to u(x),

but is not single-pass; therefore, it is significantly more computationally expensive;

e Tsitsiklis’ method is single-pass, efficiently produces numerical solutions for U(x)
converging to u(x), but only for the isotropic running cost functions; therefore, it can

be used for the Eikonal equation 2.18 only.

Our new methods, which are both single-pass and applicable to the general Hamilton-

Jacobi-Bellman PDEs 2.15, will be introduced in chapters 4 and refchap:HybridMethod.

®In section 6.1 we will actually show that everything in that class of equations can be viewed as a
Hamilton-Jacobi-Bellman PDE stemming from the optimal trajectory problem.
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2.2.8 Why Dijkstra’s method cannot be used here.

Not even in the Eikonal case (i.e., K(x,a) = K(x)), alas...

It seems so simple and so reasonable:
e lay out a uniform Cartesian grid X, with the grid points x;; = (hi, hj);
e consider the grid points to be the nodes of the network;

e set the transition costs to be K (x5, &) = hK(x;;) if & is one of the four neighbors of

x;j, and K(x;5, &) = oo otherwise.
e set the termination cost to be ¢(x) for all the nodes on 9€;

e use Dijkstra’s method find the value function U for the resulting “shortest path on

the network” problem.

It works, but with a little caveat: as the grid is refined, U does not converge to .
Figure 2.4 below shows the level sets for of U obtained by this version of Dijkstra’s algorithm
for the simplest possible case K(x,a) = 1, and the boundary condition %(0,0) = 0. This
picture does not improve as the grid is refined, and the reason for this is that only those
trajectories running along network links are considered during the optimization. Thus, any
trajectory which requires “diagonal” motion will not be modeled no matter how small the
grid size h is*.

As demonstrated in [46], these numerical approximations U can be formally shown

to approximate the solution of the PDE
ma‘X(|ul‘($7 y)|7 |“y($a y)|) = K(IE, y)a
which is obviously not equivalent to the Eikonal PDE

IVu(z, y)|| = K(z,y).

*Of course, as the grid is refined, we can layout a path on the grid, which is arbitrarily close to the
optimal trajectory. However, the length of that path will not converge to the length of the true optimal
trajectory even as h — 0.
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Figure 2.4: The “distance from the origin”: Euclidean (left) and as found by Dijkstra’s method (right).

The latter is often referred to as a “Manhattan distance”.

2.2.9 Gonzales-Rofman iterative method

Here we provide a derivation of the method based on a “naive” application of
Bellman’s optimality principle; the rigorous derivation and the proof of convergence can be
found in [24]°.

We assume that a triangulated mesh X of the diameter h is defined on 2. For
every mesh point & € X we define S(x) to be a set of all the simplexes in the mesh adjacent
to @, (i.e., the simplexes, which have & as one of their vertices). If s € S(x), we will use

the notation 4,1 and x4 for the other vertices of the simplex s.

If we do not change our direction, we are likely to end up where we are headed.

Chinese Proverb

The key assumption in deriving this discretization is that, as the vehicle starts to move
from a mesh point «, the direction of motion a does not change until the vehicle reaches

the edge of the simplex.

"The original Gonzales-Rofman iterative method was designed for a slightly different control-theoretic
problem, in which the running cost is time-discounted, and the resulting Hamilton-Jacobi-Bellman PDE has
the form Av(z) = minges, {Vo(x)- %}4—1, where the value function v(x) is related to the value function

u(e) of our version of the optimal trajectory problem by Kruzhkov’s transform: v(z) = 1—e **(®). We note
that the need for this “technical trick” seems unavoidable, since even the existence of the viscosity solution
to our HJB PDE 2.24 is normally demonstrated by employing Kruzhkov’s transform and then proving the
existence of the viscosity solution v(x). See [21, 30] for details.



30

Suppose that a(t) is the optimal control for the point & and the corresponding
optimal trajectory y'(t) = a(t) intersects the edge x4 1252 of the simplex s € S(x) at some

point & = (x 1 + (1 — ()xs,2 (see Figure 2.5).

X2

Figure 2.5: Gonzales-Rofman discretization: just keep going straight until you hit the edge of the simplex.

Define 7(¢) = || — z|| = ||({zs,1 + (1 — {)xs,2) — |. If the vehicle is assumed

to move locally along the straight lines, then a(t) = a¢ = a;(z:)n By the optimality of that

trajectory, "
7(¢
u(zx) ~ /0 K(y(s),ac)ds +u(@) = 7(¢()K(x,ac) + u(Z).

We note that u(&) can be linearly approximated using u(xs,1) and u(xs,2). Invoking the

optimality principle, we can now write the equation for the numerical approximation U:

Ulx) = sglgi(r%)‘/;(w);
Vs(z) = Crg[i)flu{T(C)K(w,ag)+CU(ws,1)+(1—C)U(ws,z)}- (2.27)

Remark 2.2.24. As often is the case with the control-theoretic numerical methods (e.g.,
[4, 12, 22]), the above equation is obtained by applying the optimality criterion, rather
than by discretizing the corresponding Hamilton-Jacobi-Bellman PDE. Nevertheless, any
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approach, which yields the value function u(z) in the limit, will automatically solve the

PDE by the uniqueness of the viscosity solution [16, 15].

Remark 2.2.25. Even if the viscosity solution u(x) is absolutely smooth, the above method
is at most first order accurate since the first order approximations were used both for u (&)
and for the cost of using the control a(-). Similar higher-order control-theoretic numerical

methods can be found in [23].

The discretized equation 2.27 has to be satisfied at every mesh point in X; this
leaves us with a coupled system of M non-linear equations, which usually have to be solved
simultaneously through the iterations. Due to the structure of the system, each iteration
involves solving a local minimization problem for each mesh point and even in the simplest
problems the number of iterations will be proportional to the diameter of the mesh-graph.
The number of iteration can be reduced using Gauss—Seidel relaxation (as in [24]), but we

know of no theoretical guarantees of the rate of convergence.

2.2.10 Tsitsiklis’ Algorithm for the isotropic case

For a special case of the Eikonal equation, the iterative approach is not the only
option. Two fast methods are available for this problem. Sethian Fast Marching Method,
based on the upwind finite difference schemes will be discussed in section 3.4.2. Here we
present a single-pass version of the Gonzales-Rofman scheme for the isotropic running cost.
This method is a modification of a fast algorithm developed by Tsitsiklis in [53] adapted
for the unstructured meshes. Tsitsiklis has shown that the numerical solution U obtained
by the Gonzales-Rofman scheme for the Eikonal equation has a property similar to the

causality property (2.2.19) of the viscosity solution to that equation®:

Property 2.2.26 (Causality). If Vi(x) is computed by the formula 2.27, then Vs(x) >
max{U (@5,1), U (@s.2)}-

This is not surprising, since the equation 2.27 enforces upwinding : the minimizing
¢ corresponds to an approximate optimal trajectory (characteristic); thus, the numerical
method computes U(x) based on the simplex s € S(x) which contains the characteristic for
. By the property 2.2.19, this automatically means that VU is pointing from the simplex

S.

®The actual property proven in [53] is slightly different since Tsitsiklis’ method was formulated on a
uniform Cartesian grid.
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Define N = {x; | &; € N(x) and U(x;) < U(x)} and NU_ = {U(z;) | =; €
N_(z)}. Since U(x) < Vi(x), the property 2.2.26 allows to conclude that U(z) depends
only upon NU_(z).

The same construction used in section 2.1.3 to build the original Dijkstra’s algo-

rithm can be employed here to obtain the following single-pass method.

All the mesh points are divided into three classes: Far (no information about
the correct value of U is known), Accepted (the correct value of U has been computed),
and Considered (adjacent to Accepted), for which V has already been computed, but it is
still unclear if V' = U. For every Considered x, we define the set NS(z) = {s € S(z) |
xs,1 and xg 2 are Accepted}. We also will use a set S(xq,x2) to denote the simplexes

adjacent to both of these mesh points.

1. Start with all the mesh points in Far.
2. Move the mesh points on the boundary (y € 92) to Accepted (U(y) = q(y)).
3. Move all the mesh points & adjacent to the boundary into Considered and evaluate

the tentative values

Vi) := in V(o). 2.28
() jmin s(x) (2.28)
4. Find the mesh point & with the smallest value of V' among all the C'onsidered.
5. Move Z to Accepted (U(Z) =V (Z)).

6. Move the Far mesh points adjacent to & (i.e., @ € N(Z)) into Considered.

7. Re-evaluate V for all the Considered = adjacent to Z (i.e., x € N(&))

V(x) := min {V(ac), min Vs(m)} . (2.29)
se(S(x,Z)NNS(T))

8. If Considered is not empty then go to 4.

We note that the resulting algorithm

e produces the numerical solution U in O(M log(M)) steps (same complexity analysis

as for Dijkstra’s method);
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e produces the numerical solution U which converges to u as the diameter of the
mesh tends to zero (follows from the convergence properties of the Gonzales-Rofman

scheme);

e isonly first order (Gonzales-Rofman scheme is based on the first order approximations;
we are currently unaware of any other control-theoretic discretization, which would

posses the property 2.2.26);

e is only applicable for the Eikonal equation (the impossibility to directly apply this

method to anisotropic problems will be further discussed in section 4.1).
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Chapter 3

Front Propagation Problems

3.1 Huygens’ principle

Consider a simple curve I'; evolving in R2. We will assume that the curve moves in
the direction normal to itself with some speed F(x,n)!, where n is the “outwards pointing”
unit vector normal to the curve as it passes through the point .

Such a definition is meaningful only for a smooth curve. Wherever I'; does not
;

have a well-defined tangent a more elaborate construction (based on a variant of Huygens

principle) is required:
1. at every point € I'; where the vector n is well-defined we construct a circle of radius
|F(z,n)|At;
2. taking the envelope of all such circles, one obtains an approximation of ;1 A¢;

3. the limit of such approximations as At — 0 provides a definition of the curve’s evolu-

tion.

Remark 3.1.1. Note that Huygens’ principle by itself does not keep track of whether the
front is advancing or retreating: the envelope referred to in the above description should
be a “signed envelope” since F' might be changing sign (see the lower left picture in Figure

3.1, for example).

'In general, the function F' might depend upon local geometric characterization of the curve (e.g., normal
direction, curvature, etc), global properties of the curve (e.g., some integral computed along I';), or the
properties of the medium, in which the curve is propagating. In this discussion we will consider only F'
dependent upon the current position and orientation of I't. A collection of methods for the more general
front propagation problems can be found in [46].
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Figure 3.1: Huygens’ construction: a circle evolving with different speeds in the normal direction.

3.2 The boundary value problem formulation

Anyone informed that the universe is expanding and contracting in pulsations

of eighty billion years has a right to ask, “What’s in it for me?”

PETER DE VRIES (1910 - 1993)

US NOVELIST, EDITOR

An important subclass of the front propagation problems consists of all the appli-
cations, where the speed function F' never changes sign. If the function F' is strictly positive

(or negative), then the front always expands (or contracts). An important implication is
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that such a front can pass through each point only once?.

Thus, we can define u(x) to
be the time when the interface passes through the point & and derive a partial differential
equation® formally satisfied by w.

We first note that the level sets of u correspond to the positions of the front I' at
different times:

ulx) =t <= x Ty

Therefore, if F' is always nonnegative, the outwards unit normal vector can be expressed as

Vu( )

@) = G (3.1)

For some small 7, consider a point & = x+7n(x). Since the front is advancing in the normal

direction with the speed F(x,n), we know that u(Z) ~ u(x) + &l On the other hand,

.
Tn) v
since m is a unit vector in the direction of Vu, we know that ||Vul|| ~ M Thus,

passing to the limit as 7 — 0, we obtain the PDE formally satisfied by w:

v (= i) = &

u = 0 on ['y.

The above equation is in fact a static Hamilton-Jacobi PDE of the form H (Vu, z) =
1, where the Hamiltonian H is homogeneous of degree one in the first argument. To in-
terpret Eqn 3.2 where Vu does not exist one normally uses the unique viscosity solution,
as defined in [15, 16]. As follows from the results in [20], the viscosity solution u of Eqn
3.2 will correspond to the evolution of I'y defined by Huygens’ principle. In general, the
Hamiltonian H(Vu,x) = |Vu|lF (a:, Hg—zll) is not convex. As shown in [20], such a Hamil-
tonian can be always considered as a result of a differential game model. To the best of our
knowledge, there are currently no single-pass numerical methods for these models although
some iterative schemes are well known (see [5], for example). However, if the speed function

F is such that the Hamiltonian is convex and for some constants Fi, Fb
0< Fi < F(z,p) < F, < V&, p

then Eqn 3.2 belongs to the class of PDEs described in section 1.4. In Chapter 6 we will

show that such an equation can always be considered as a Hamilton-Jacobi-Bellman PDE

®The entropy criterion formulated in [40] for the flame propagation in combustion problems is a perfect
example of this principle: “Once a particle burns, it remains burnt.”
30ur derivation is close to the one produced in [46].
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for a suitable optimal trajectory problem. Therefore, this subclass of front propagation
problems can be treated in the framework of control-theory, and the single-pass methods

defined in chapters 4 and 6 are applicable.

3.3 The glory of isotropy: Eikonal revisited.

Suppose that the front propagation is isotropic, i.e., the speed of the front motion

in the normal direction is independent of the orientation of the front:
F(xz,n) = F(x).

In this case, the static Hamilton-Jacobi PDE 3.2 immediately reduces to the Eikonal equa-
tion:

|Vu(z)||F(x) = 1. (3.3)

Setting K (x) = %, we see the connection to the Eikonal equation obtained from the

control-theoretic point of view in section 2.2.4. We note that

- 1 - 1 i i K _ B
o i =155, Fo= 5. Therefore, the anisotropy coefficient T = =T

e If we consider the “constant cost, variable speed” optimal trajectory problem (from

section 2.2.5), then F(x) = f(x), F1 = f1, F» = fo. We will see in Chapter 6 that the

relationship is much more complicated in the anisotropic case.

e Not surprisingly, the case F'(x) = 1, which describes the motion of the front with the
unit speed, can be viewed as a problem of finding the minimum distance d(z) from x

to Fo.

3.4 Numerical methods for isotropic front propagation.

This connection between the isotropic front propagation and isotropic min-time
optimal trajectory problems is quite well known. For example, in [21] it is suggested to use
the iterative control-theoretic methods to obtain the numerical solution for the isotropic
flame propagation models. Of course, Tsitsiklis’ algorithm (1995) can also be used in this
setting to produce the first-order approximation efficiently. However, some of the more

common front propagation problems come from combustion, fluid dynamics and crystal
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growth. Finite-difference schemes, which primarily approximate the PDE rather than some
optimality principle, are historically much more common in these application domains. In
this section we will consider a number of such methods, including several versions of the Fast
Marching Method - a single-pass technique for solving the Eikonal and related problems
introduced by Sethian (1996). The higher-order upwinding finite-difference update formulas
used in this method will be required for building the hybrid methods (Chapter 6), which

rely on both the control-theoretic and the front propagation perspectives.

Honest differences are often a healthy sign of progress.

MAHATMA GANDHI (1869 - 1948)
INDIAN PHILOSOPHER

3.4.1 Upwinding finite difference discretization.

On a uniform Cartesian grid X of grid size h, the Eikonal equation 3.3 can be

approximated as follows:

maz (D~ *Uj j, —D**U; j,0) + maz(D YU; j, —D*VU; 4,0)* = F, 7, (3.4)

_ U; i—U;j—15 U; i—U;.j _ U; ;—U; ;- Ui i+1—U; 5
xzrr. . — Yig i—1,7 +xzrr. . Yi+l,g 1,j yrr. . — Yij i,j—1 +yrr. . — Yig+1 i,
where DU, j = “biHi=bi DAY, ;= SHLITDW DY, s = SRS DRV, o = SRt

This numerical first-order scheme, given in [38], is based on a Godunov-type mono-

4

tone upwinding scheme®. The convergence of such monotone, upwinding schemes to the

viscosity solution can be shown based on the results in [6].

Remark 3.4.1. Note that, in contrast with the control-theoretic methods, this scheme is
derived by directly approximating the components of Vu with the finite difference operators.
The choice of upwinding finite difference operators is natural if one considers the connection

of Hamilton-Jacobi PDEs to the hyperbolic conservation laws.

Since the equation 3.4 has to hold at every grid point, it presents a challenge of
solving a coupled system of M non-linear equations. In [38] it was proposed to solve this

system iteratively. Sethian’s original Fast Marching Method [43] is based on an observation

“Throughout this work, the term upwinding is used to signify that the value of U; ; is computed using
the simplex, which contains the characteristic for the point x;,;. It is easy to see that the above formula
computes U;; using the simplex from which the gradient Vu(a;,;) is pointing. Since, for the isotropic
case, the gradient direction and the characteristic directions are exactly the opposite, this is equivalent to
demonstrating that this scheme is upwinding.
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that, as a result of the upwinding, the system specified by Eqn 3.4 can be effectively de-

coupled and solved much more efficiently.

3.4.2 Sethian’s Fast Marching Method.

As it was proven in [43], the value Uj; ; satisfying the equation 3.4 can be computed
“quadrant by quadrant”, as follows:
Define S(x;,;) to be the set of four right triangles of the form x;41 jx; j&; j4+1. Define the
upwinding update V, from the triangle s € S(x; ;) to be the solution of the equation

(max <%(“’81),0>>2 + (max (%@’82),0»2 = F2(z; ;).

Uij= min V.
s€S(T4,5)

Define

Moreover, the following key observation in [43] shows that the numerical solution mirrors

the property 2.2.19 of the Eikonal equation.

Observation 3.4.2 (Causality). The upwinding nature of the finite difference operators
employed in (3.4) ensures that U;; depends only on those values in NU(x;,j), which are

smaller than Uj ;.

For example, if U; j11 > U; ; then DU, ; > 0 and max(D~YU; ;, —D*VU;, ;,0) = max(D YU, ;,0).
Again, we are in the situation, where the system could be solved in O(M) opera-

tions if only the ordering of «; ; based on U; ; were known. Of course, the ordering is not a

priori known; hence Fast Marching Method determines it “one grid point at a time” in the

spirit of Dijkstra’s method, as described in section 2.1.3.

All the grid points are divided into three classes: Far (no information about the
correct value of U is known), Accepted (the correct value of U has been computed), and
Considered (adjacent to Accepted), for which V has already been computed, but it is
still unclear if V' = U. For every Considered x, we define the set NS(z) = {s € S(x) |
xs,1 and xg 2 are Accepted}. If 1 is adjacent to g, we will use S(x1,x2) to denote the

two “quadrant triangles” for @1, which have x2 as one of their vertices.

1. Start with all the grid points in Far.
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2. Move the grid points on the boundary (y € 02) to Accepted (U(y) = q(y)).

3. Move all the grid points & adjacent to the boundary into Considered and evaluate

the tentative values

Vi) = in V(o). 3.5
() jmin s(x) (3.5)
4. Find the grid point & with the smallest value of V' among all the Considered.
5. Move & to Accepted (U(z) = V(&)).

6. Move the Far grid points adjacent to Z (i.e., ® € N(Z)) into Considered.

7. Re-evaluate V for all the Considered x adjacent to & (i.e., x € N(&))

V() := min< V(z), min Vs(z) 7 (3.6)
se(S(x,&) NNS(x))

or, if S(z,Z) NS(z) = 0,

8. If Considered is not empty then go to 4.

This is the Fast Marching Method as described in [43].
We note that the resulting algorithm

e produces the numerical solution U in O(M log(M)) steps (same complexity analysis

as for Dijkstra’s method);

e produces the numerical solution U which converges to u as the grid size h tends to

zero (follows from the convergence properties of the discretization 3.4);

e is only first order accurate (the higher order extensions of the Fast Marching Method

will be discussed in section 3.4.4);

e is formulated on a uniform Cartesian grid (the versions of the Fast Marching Method

for the triangulated meshes will be described in section 3.4.3);

e is only applicable for the Eikonal equation (the impossibility to directly apply this

method to general anisotropic problems will be demonstrated in section 4.1).
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3.4.3 Fast Marching Method on triangulated meshes

The first extensions of Fast Marching Method to the triangulated meshes were
performed in [27] for the meshes in R? and on two dimensional manifolds. A general version
for the unstructured meshes in R" was presented in [48]; the structure of our exposition is

similar to the latter even though all the examples and formulas are derived for R2.

General Strategy

In order to build the Fast Marching Method, we will first need to find a consistent
upwinding approximation of the PDE on the unstructured mesh X. If S(zx) is the set of
simplexes which have the mesh point & as one of their vertices, then we will look for a
discretization in the form

U(z) = min V,, 3.8
(z) o (3.8)

where V; is the value of U(x) computed using the values of U(xs,1) and U(xs,2), subject to
the assumption that the characteristic for the mesh point « lies inside the simplex s. Thus,

we
e show how to produce such V; for a given simplex;

e derive an upwinding criterion (i.e., a way to verify that the value of V; is consistent

with the assumption about the characteristic direction);

e prove that for the acute meshes the causality is the result of upwinding (i.e., U(x)

depends only on the values in NU (z) smaller than U(x));

e proceed to build a single-pass algorithm for computing U(x) on acute triangulated

meshes;

e show how the causality can be restored for the non-acute simplexes.

Directional derivative approximations

The finite difference methods for Hamilton-Jacobi PDEs work by employing suit-
able upwinding approximations for the gradient. Therefore, our first concern is to find
such an approximation on an unstructured mesh. Since there generally is no natural choice

of the coordinate system for an unstructured mesh, we compute the gradient as a linear
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combination of the directional derivatives. For any mesh point  and simplex s € S(x),

the difference approximation of the directional derivative is obviously available for the di-
$7m3,1

rections (x — x,,1) and (z — xs,2). We note that the unit vectors Py = Tz, and
Py = % will be linearly independent. Consider the 2 x 2 nonsingular matrix P

having P; and P» as its rows. Let v,(x) be the value of the directional derivative for the
direction P, evaluated at the point . Assuming that the function u is differentiable at

v
x, we have PVu(x) = v(x), for the vector v = e Combining this with the Eikonal
V2

equation we can now write an equation for v(x):
v(z)T(PPT) o (z) = F%(x). (3.9)

The particular difference operators used to approximate v, will depend upon the
type of the mesh and will determine the order of convergence of the numerical method.
We note, however, that if those difference operators depend upon u(x) linearly, then the
resulting discretized version of the Eikonal equation will be quadratic in terms of U (z)5.

To obtain the discretized equation, we now replace each v, with the corresponding
difference approximation: v, = a,U(x) + b,, where b,’s linearly depend on the values of
U (and possibly of VU for higher order schemes) at the mesh points x; and @, 2. For

ay by

convenience let Q = (PPT)"!, a = ,and b = . If V5 is the approximation
a9 bQ

for u(x) computed from the simplex s, then v =~ Via + b and the discretized version of Eqn

3.9 is the quadratic equation:

(@”Qa) (Vy(x))? + (2a” Qb)V,(z) + (b7 Qb) = F~2. (3.10)

Upwinding Criteria

Recall that U(x) = Vi(x) if the characteristic for the mesh point x lies within
the simplex s. The equation 3.10 for computing V,(x) based on U(xs,1) and U(xs,2) was
also derived under that same assumption about the characteristic direction. It is, therefore,
logical to request that the computed value of V() should be consistent with the upwinding
criterion : the computed approximate characteristic direction should lie within the simplex,

which produced the approximation. Recall that for the Eikonal equation the characteristic

5This statement is also true for any unstructured meshes in R".
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U
~J

Xs1 Xs2 X1 Xs2

Figure 3.2: Examples of acceptable (left) and unacceptable (right) approximations for Vu(z). In the

latter case the upwinding requirement is not satisfied, and U(x) will be computed using some other simplex.

direction is the opposite of the gradient direction, wherever Vu is defined. Therefore, for
the discretized Eikonal equation, the upwinding criterion can be strictly defined as follows:
the computed value of Vy(x) is acceptable if the update is coming from within the simplex
s, i.e., only if the computed approximate (—VU (x)) lies inside the simplex. (See Figure

3.2.) This is equivalent to requiring that
all of the components of the vector Qv =~ Q(Vi(x)a + b) are non-negative. (3.11)

In R? the above upwinding condition is equivalent to two inequalities: (V(x)a; + by) >
(Py - PoT)(V,(z)ag + by) and (Vi(x)as + by) > (P1 - Pol)(Vi(x)ay + by).

We now assume that the simplex s is acute. Hence, (P - PzT) > 0 and, if both of
the above inequalities are satisfied, it follows that v, ~ (Vs(x)a,+b.) > 0, for r = 1,2. Since
v, 18 the approximation for the directional derivative in the direction P, = H«’L':Tz::\l’ we
conclude that Vi > max (U(@s,1), U(2s,2)), provided the upwinding condition is satisfied.

Thus, we have demonstrated that the discretized schemes of the form 3.10 possess

the following causality property similar to the property 2.2.19 of the Eikonal equation.

Property 3.4.3 (Causality). If V; is computed from the acute simplex s € S(x) using the
formula 3.10 and if the upwinding condition 3.11 is satisfied, then Vy > max (U(xs,1), U(xs,2))-

Since U(z) = minseg(g) Vs, this means that U(z) also depends only on the values
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in NU(z), which are smaller than U(z). If the ordering of the mesh points based on the
values of U were known in advance, the system 3.8 would be effectively de-coupled, and the
equations could be solved one-by-one. However, since the ordering is not a priori known,
we design the Fast Marching Method to determine it “one mesh point at a time”, using the
causality property. The algorithm structure is quite similar to the Fast Marching Method
defined on the Cartesian Grids in the previous section. We include it here for the sake of

completeness.

All the mesh points are divided into three classes: Far (no information about
the correct value of U is known), Accepted (the correct value of U has been computed),
and Considered (adjacent to Accepted), for which V has already been computed, but it
is still unclear if V= U. For every Considered x we define the set NS(z) = {s € S(x) |
xs1 and x, 2 are Accepted}. If @1 is adjacent to x2, we will use the notation S(x1,x2) to

denote the set S(x1)[) S(z2).

1. Start with all the mesh points in Far.
2. Move the mesh points on the boundary (y € 092) to Accepted (U(y) = q(y)).

3. Move all the mesh points & adjacent to the boundary into Considered and evaluate

the tentative values

V(z):= min Vi(z). 3.12
(x) s (x) (3.12)

4. Find the mesh point & with the smallest value of V among all the C'onsidered.
5. Move & to Accepted (U(z) = V(&)).
6. Move the Far mesh points adjacent to & (i.e., € N(Z)) into Considered.

7. Re-evaluate V for all the Considered = adjacent to Z (i.e., x € N(&))
V() := min {V(m), min Vs(m)} , (3.13)
se(S(x,&) NNS(x))
(where Vi(x) is a solution of the equation 3.10 satisfying the upwinding condition
3.11)
or, if S(z,Z) NS(z) = 0,

V() := min {V(a)), U(z) + %} ; (3.14)
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8. If Considered is not empty then go to 4.

Extension to Obtuse Meshes

In all of the fast methods presented so far the de-coupling was made possible
because the discretized upwind scheme possessed some property equivalent to the causality
property (2.2.19) of the Eikonal equation. However, if the triangulated mesh contains
simplexes with obtuse angles, then the causality relationship might not hold even in the
limit (i.e., not even for the viscosity solution u(x); recall that the property 2.2.19 required
the simplex to be acute). Indeed, when the triangle s = xxqx2 is obtuse, it is possible that
u(x) < max(u(x1),u(xz)) even if the characteristic for the point « lies inside that triangle.

Consider, for example, the front advancing with unit speed in the direction (1, 1)
(suppose we are solving ||Vu|| = 1 in R? with the boundary condition u = 0 on the line
y = —xz). Consider the simplex xxix2 from Figure 3.3. The vector Vu points from that
simplex. Since the optimal direction for the Eikonal problems is (—Vu), we see that the
characteristic for the point @ lies inside the triangle. At the same time, it is obvious from
the picture that u(zy1) < u(x) < u(xz). If the discretization is upwinding, we need to
compute U(x) based on U(xy1) and U(xzz2). However, if the mesh points are Accepted in
the ascending order, this means that U(xz2) will not be known in time to compute U(x).

One possible solution is to build locally numerical support at obtuse angles, as was
suggested in [27]. For an obtuse angle x;xx2 (see Fig. 3.3a), consider its splitting section —
an angle such that any ray inside it will split €1 x> into two acute angles. Find the closest
Accepted mesh point in the splitting section and then use that point as if it were adjacent
to . Thus, we would use simplex x;zx¢ in Fig. 3.3a.

There are some disadvantages to this method. First of all, the implementation for
higher dimensions is rather cumbersome. Second, implementing it for triangulated surfaces
requires an additional step of “unfolding” [27]. Third, the method is no longer confined to
considering the mesh points immediately adjacent to & since we need to look back for an
Accepted point in the splitting section. The upper bound for how far back we need to look
in the splitting section is available but depends on the maximum angle of the triangulation
— the wider angle corresponds to the narrower splitting section which is less likely to contain
a mesh point near .

We observe that this splitting section method can be further improved by noting
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Fig.3.3a: Constructing splitting section for an obtuse angle

Fig.3.3b: Modified construction of splitting section

Figure 3.3: Splitting strategies

that the cause of the problem is not just the obtuse angle in the defining simplex, but the
fact that some of the vertices of that simplex are not yet Accepted. Thus, it is not necessary
to find an Accepted node in the splitting section; it is enough to find an Accepted node such
that the resulting virtual simplex intersects the splitting section. This often allows to look
back much less; thus, in Fig. 3.3b, for example, the mesh point 23 is the first Accepted
point found in the splitting section, and hence the virtual simplex z;xxs will be used to

compute the update for U(x).

We note that our construction works equally well on manifolds. In section 8.1.2

we present an example of computation, where the offsets equidistant from the bounding
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box are found on a manifold, which represents a complex machine part. This computation
illustrates the splitting section constructions; the triangulation is obtained by mapping a
regular triangular mesh in the 2 — y plane onto the surface, creating a large number of

obtuse and near-degenerate triangles, including some with angles bigger than 160°.

3.4.4 Higher order versions of the Fast Marching Method

We now create higher accuracy Fast Marching Methods by using higher order
difference approximations for the directional derivatives. It would seem that such approx-
imations can be used only if the solution w is sufficiently smooth; nonetheless, the fact
that at some points Vu is undefined does not prevent us from using this approach: w is
differentiable almost everywhere, and characteristics never emanate from the shocks, i.e.,
no information is created at the shock. However, the order of the difference approximation
does not always correspond to the order of convergence of the method. Still, such methods
converge faster than the ones using the first order approximations [45]. We further discuss
the rate of convergence of the higher accuracy methods in section 8.1.1. Our exposition

repeats the results presented in [48].

Higher Order Methods on Cartesian Grid

A higher order Fast Marching Method on Cartesian grid was first presented by
Sethian in [45]. Here we show that such methods can also be obtained from the direc-
tional derivative approximation perspective. For a Cartesian grid, the natural choice of
the coordinate system will be aligned with the grid lines. Then, for any grid point @, a
direction vector P, is always equal (up to the sign) to one of the canonical basis vectors.
Thus, for  inside the grid (i.e., away from the boundary) both points &, 1 = © — hP, and
Tp2 = T — 2h P, are also present in the grid. Then we can use the well-known second order

difference approximation for the directional derivative

vp(x)

Using the notation introduced in section 3.4.3, we can write

_3u(x) — du(zr) +u(zr2)
- 2h

. (3.15)

_ i b, — _4u(wr,1) + U(iBr,z)
o2h’ ! 2h, '

Ay

Since this approximation is valid only inside the domain we need to have the exact values

of u for the grid points near the boundary in order to start the algorithm. If these values
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are not available, we can use the first order Fast Marching Algorithm with much smaller
mesh size to obtain the second order accurate approximations of v at those points.

We note that the same higher order difference approximations can be used even for
non-Cartesian grids provided all the grid points lie on the straight lines and are equidistant

on those lines.

Higher Order Methods on Unstructured Mesh

Typically, we do not have orthogonal difference operators on an unstructured mesh.
Fortunately, we can still build higher order directional derivative approximations by using
the gradient information at the grid points adjacent to x.

Consider a grid point @, adjacent to & and the corresponding directional vector
P, = % Supposing that both u(z,) and Vu(z,) are known, we can write a second
order approximation for the directional derivative

— P, -Vu(z,). (3.16)

2 —2u(x,)
ay = m; =~
We can also compute the second order accurate approximation for the gradient at &, namely
Vu(z) = P~'v =~ P~ (u(x)a + b), provided u(x) is known with at least the second order
accuracy as well. Thus, as the algorithm runs, we will store for each Accepted grid point
the computed values of both v and Vu to be later used when recomputing the Considered
points.

Since this approach requires information about the gradient we need to have the
exact values of Vu for the grid points on the boundary in order to start the algorithm. If
these values are not available, we can use the first order Fast Marching Algorithm with much
denser mesh in the narrow band near the boundary to obtain the accurate approximations
of Vu at the points in that narrow band.

Finally, we note that an additional step of “gradient mapping” is required to use

this higher order method on non-smooth triangulated surfaces [48].

Remark 3.4.4. Since the above approximations are second order accurate only away from

a singularity, we note that the exact (or second order accurate) values of u are also needed
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for the grid points in the narrow band around each singularity at the boundary. The width
of the narrow band should stay constant as the mesh is refined to observe the second order
convergence to the viscosity solution.

This requirement equally applies to the higher order methods on Cartesian grids and on
unstructured meshes. On unstructured meshes, the second order accurate values of Vu are

also required in the same narrow band.

3.4.5 Comparing two fast methods for the Eikonal equation.

So far we have considered two different single-pass methods for the Eikonal equa-
tion: Tsitsiklis” algorithm and Sethian’s Fast Marching Method. Each of these methods
is effectively de-coupling the system of equations, which are the discrete analogue of the
Eikonal PDE. Thus, it is not surprising that there are several similarities in their structure

and properties:

e Each method is based on an observation that the particular discretization possesses a

causality property similar to that of the Eikonal equation.
e Both methods compute the numerical solutions converging to the viscosity solution.
e Both use heap-sort data structures to achieve Dijkstra-like efficiency.

We also summarize here the main differences between these two single-pass numerical meth-

ods:

e The discretizations are different and so are the underlying formulations (front propa-

gation vs. optimal trajectories).

e An additional upwinding criterion is necessary to make Fast Marching Methods work;
no such criterion is necessary for Tsitsiklis’ algorithm. The reason for this is that
the control-theoretic discretization 2.27 works by directly approximating the optimal

trajectory (characteristic) rather than the gradient.

e In many applications, tracking the front propagation is only a part of a bigger problem,
and upwind finite difference numerical methods are used for subsequent calculations.
These finite differences can be saved for the later usage if the Fast Marching Method

is used to solve the Eikonal equation.
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e The quadratic update formula is readily available for the Fast Marching Method on
an arbitrary mesh in R™; for Tsitsiklis’ algorithm, the corresponding update formula
has to be produced by solving the local (n — 1)-dimensional quadratic optimization
problem. We note that, on a uniform Cartesian grid in R?, the quadratic update

formula is the same for both methods. This is not the case for unstructured meshes.

e Many extensions of the Fast Marching Method are available, including implementa-

tions on unstructured meshes, in R and on manifolds®.

e It is much easier to build higher-order versions of the Fast Marching Method, since

numerous upwind finite difference operators are available.

Our new hybrid methods for solving the more general anisotropic problems (Chapter 6)
will use the upwind finite difference discretizations (similar to those employed in the Fast
Marching Method), while determining the range of possible characteristic directions, based

on the control-theoretic considerations.

3.5 Simple anisotropic example: Eikonal on a manifold.

We have demonstrated that the Fast Marching Method can be implemented not
only on regular grids, but also on the unstructured meshes. Our interest in such implemen-
tations stems from the necessity to solve Eikonal equation not only in the plane, but also
on manifolds. As shown in [46], if the manifold is a graph of some function z = g(z,y), then
the isotropic front propagation on this manifold corresponds to a more general (anisotropic)
front propagation problem in the 2 — y plane. The corresponding (more general) Hamilton-
Jacobi PDE in the plane does not posses the causality property and that makes it much
more difficult to solve using a single-pass method (see section 4.1). Hence, the following
approach, introduced in [27], is preferable: the manifold is approximated by some triangu-
lated mesh X and the Fast Marching Method (or Tsitsiklis’ Algorithm) is applied to solve
the Eikonal equation on that mesh.

Moreover, if we start with an anisotropic front propagation problem in the plane,
it is sometimes possible to reformulate it as an isotropic problem on a certain manifold.

The following “lifting to manifold” procedure was introduced in [48].

6 Additionally, we note that we have extended Tsitsiklis’ original Algorithm to unstructured meshes in
R? and on manifolds. The splitting section techniques developed for the Fast Marching Method can also be
used to implement Tsitsiklis’ Algorithm on meshes with non-acute simplexes.
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Suppose we are given a graph of a function z = ¢(z,y), and attempt to solve
the Eikonal equation ||Vu|| = 1/F(z,y) on that manifold. To be clear, F'(z,y) gives the
speed in the direction normal to the level line u = constant on the manifold z = g(z,y).
Projecting down onto the z — y plane, this translates into a particular static Hamilton-
Jacobi equation on the plane. We now use this argument in reverse as follows. Consider

any static Hamilton-Jacobi equation in the z — y plane of the form
a(@, y)us + bz, y)uguy + c(z,y)uy = g(z,y) (3.17)

together with boundary conditions for u. Now suppose we can find functions p(z,y), q(z,y)

and F(z,y) such that p, = ¢, F(z,y) > 0, and

a(z,y) = (L+¢%);  b(z,y) = —2pqg;
c(z,y) = 1 +p%);  glz,y) = A +p*+ ) F *(z,y)

It can be then shown (see [46]) that the solution of Eqn 3.17 can be obtained by solving
the Eikonal equation ||Vu| = 1/F(z,y) on the manifold z = g(x,y) where f, = p and
fy = q. Thus, for any static Hamilton-Jacobi equation of the form given by Eqn 3.17,
if we can find functions p and ¢ satisfying the above, then we can construct the surface
z = g(z,y), approximate it with a triangulated mesh, and then solve the straightforward
Eikonal problem on the manifold.

As an example, we consider the following equation

(1 + ~ysin®(2mz) cos?(2my))uy — & sin(dnz) sin(dmy)uguy, + (1 + 7 cos? (2nz) sin?(2my) )uy, =

= 1 + ycos?(27x) sin?(27y) + v sin?(27x) cos?(2my),

where v = (.97)%, z,y € [0,1], and the boundary condition is u(.5,.5) = 0. We can find
functions p = .97 cos(2nz) sin(27y), ¢ = .97 sin(27z) cos(2wy) and F = 1 which satisfy our
compatibility requirements, and then solve the Eikonal equation ||[Vu|| = 1 on the surface
g(z,y) = .45sin(27x) sin(27y). Figure 3.4 shows the evolving front on the surface, and the
solution to the original problem on the plane.

Whenever such a transformation is possible, the problem can be addressed using
the single-pass methods for the Eikonal equation applied to a mesh approximating the
manifold z = g(z,y). Such examples can be very useful as the test cases for the general
method for anisotropic problems. We can use the general method to solve the Hamilton-

Jacobi PDE 3.17 in the plane and then compare them to the numerical solution produced
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Figure 3.4: Using Fast Marching Method and “lifting-to-manifold” to solve an anisotropic static Hamilton-

Jacobi equation.

by an Eikonal solver on the corresponding manifold. We will also see in Chapter 7 that the
“lifting-to-manifold” technique can be quite useful in the context of our general single-pass

methods in order to reduce the anisotropy coefficient Y.
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Chapter 4

Fast Method for the Anisotropic
Problems: the Algorithm.

In this chapter we will first attempt to use Tsitsiklis’ Algorithm to solve some more
general (non-Eikonal) problems, we will then discuss the inherent reasons for the failure of
such attempts, and, finally, we will produce a fast method for the general (anisotropic)
Hamilton-Jacobi-Bellman PDE introduced in section 2.2.3. Our method will use Gonzales-
Rofman control-theoretic discretization [24] as a building block and we will provide an
optimality-type argument to motivate the use of the method. In Chapter 5 we will revisit
this method to discuss the properties of the numerical solution U(x) and to prove its

convergence to the viscosity solution.

A sample anisotropic problem considered here corresponds to solving a “distance
from the boundary” equation on some manifold z = g(x,y). As we have seen in Chapter 2,
the viscosity solution of a “distance from the boundary” PDE is also the value function of
the corresponding min-time unit-speed optimal trajectory problem. In this formulation, a
vehicle is moving with unit speed (and unit cost) on the manifold z = g(z,y). To formulate
an equivalent problem, we now consider a second vehicle moving in the x — y plane, which
is just a shadow' of the first one. Thus, its trajectories are the orthogonal projections onto
the z — y plane of the first vehicle’s trajectories on the manifold. Since the first vehicle’s

velocity is a unit vector in the manifold’s tangent plane, the length of its projection onto

We assume that the Sun is at its zenith.
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the z — y plane yields the speed function for the shadow:

N =

f(a7$7y) = (]‘ + (Vg(:z:,y) ' 0)2)7 ’ (41)

where a is a vector of unit length in the z — y plane.
c
Consider a plane z = c1z + coy for some vector ¢ = ! . If we solve on that
C2

plane the “distance from the origin” Eikonal equation
IVd| =1,
d(0,0) =0,
then the level sets of d will be just the circles around the origin in that plane. If we project

those circles orthogonally onto the x — y plane, the obtained ellipses will be the level sets

of the viscosity solution u(x) of the equation

min{(Vu(z) -a)f(z,a)} +1=0, xz€Q, (4.2)
acs,
a
and the vehicle’s speed function in the direction a = "l will be given by
a2

M

f(a'axay) = (1 + (Clal + 02a2)2)
This constitutes our simplest test problem for this chapter.

Remark 4.0.1. As shown in [46], this same problem can be viewed in the front propagation

framework using the speed function

F(z,n) =

(14 c3)n? + (1 + ¢?)n3 — 2cacining
1+c2+c3 '

The corresponding PDE for this speed function F is

(1+ )uz(x) + (14 cf)ug (e) — 2cac1uq(z)uy ()
1+ C% + c%

=1, (4.3)

which can be shown to be equivalent to the Hamilton-Jacobi-Bellman PDE 4.2. We will
discuss the general correspondence between these two classes of problems in Chapter 6.
Here we simply note that this sample problem can be used to test the direct anisotropic
modifications of both Tsitsiklis’ Algorithm and Sethian’s Fast Marching Method (using
equation 4.3).
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4.1 Characteristics vs. gradients.

First of all, as demonstrated in section 2.2.5, we can switch from the min-time to
the min-cost optimal trajectory problem by choosing K(x,a) = m. Recall that the
Gonzales-Rofman scheme is valid in the general non-Eikonal (i.e., anisotropic) problems.
Thus, it seems natural to use Tsitsiklis’ single-pass algorithm (derived for the Eikonal
equation) to de-couple the system arising in this more general case.

We begin by noting that the algorithm defined in section 2.2.10 can be applied
without any changes at all, except that the dependence of K (or f) upon the direction a

will now be present in the update-from-a-single-simplex formula :

= min & T — T
Vife) = amin {Z b (Do) + (1= OUia) . (4.4

¢€[0,1]
What happens when this algorithm is used to compute the expansion of ellipse (equation
4.2)7 In Figure 4.1 we show the level sets of the numerical solution U obtained by this

method for two different expanding ellipses. The first contour plot corresponds to the

V2

vector ¢ = . The numerical solution converges to the value function u(x) and is

0
first order accurate as the grid size tends to 0. (We will return to this example later when we

discuss fast methods relying on a particular grid orientation in section 7.3.1.) The second

contour plot corresponds to the vector ¢ = . In this case, it is obvious that U(x)
1

does not approximate the viscosity solution very well. Nor does it improve under a grid
refinement?.

In order to understand what is different in the second example, we have to recall
that both Tsitsiklis’ Algorithm and Sethian’s Fast Marching Method are fundamentally
dependent on the causality property (2.2.19) of the Eikonal equation. Each of these single-
pass methods is based on the observation that a certain discretization also possesses a
similar causality property®. The causality results from the fact that the characteristics of
the Eikonal equation coincide with the gradient lines of its viscosity solution u. However, for

the anisotropic problems this property does not hold. When the characteristic and gradient

2The Fast Marching Method, used on a Cartesian grid with a suitable upwind finite difference discretiza-
tion of the equation 4.3, produces numerical solutions qualitatively similar to those displayed in Figure
4.1.

3The Fast Marching Method uses this property to efficiently de-couple the upwind finite difference dis-
cretization presented in [38]; Tsitsiklis’ algorithm does the same with the control-theoretic discretization
presented in [24].
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Figure 4.1: Ellipse expansion computed by Tsitsiklis’ Algorithm. Both computations performed on a
129 x 129 uniform Cartesian grid.

directions are different, the simplex zx ;) may contain the characteristic for the point x,
even if the gradient Vu(z) is not pointing from that simplex (see Figure 4.2). Thus, no
matter how small that simplex is, it is still possible that u(2¢) < u(x;). This is precisely
why both Sethian’s Fast Marching Method and Tsitsiklis’ Algorithm cannot be directly
applied in the general anisotropic (non-Eikonal) case: it is no longer possible to de-couple

the system by computing/accepting the mesh points in the ascending order.

0.4

0.2

-0.4
-0.6

-08

Figure 4.2: The characteristics and the gradient directions for an expanding ellipse.
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Remark 4.1.1. By comparing Figures 4.1B and 4.2, we observe that the isotropic single-
pass method fails exactly at those points where the gradient line and the characteristic
do not lie in the same coordinate quadrant (or, more generally, in the same simplex - the
quadrants are used because the numerical solution in Figure 4.1 is computed on a Cartesian
grid). This is an intrinsic problem: to produce the numerical solution efficiently, both of
the above single-pass methods attempt to compute U(x) in the ascending order (i.e., from
the simplex containing (—Vu)), whereas, in order to maintain the upwinding, U(x) has to

be computed from the simplex containing the characteristic.

4.2 Causality in the Hamilton-Jacobi-Bellman PDE

A different (weaker) causality property for the more general Hamilton-Jacobi-
Bellman results from Bellman’s optimality principle (section 2.2). Since the characteristics
of that PDE are, in fact, the optimal trajectories of the corresponding control problem, we
know that the value function w is strictly increasing along the characteristics.
An alternative formulation of Bellman’s principle will be even more useful for building the
single-pass method:

Let u(x) be the value function for the anisotropic min-cost optimal trajectory
problem defined on €2 in section 2.2. We will use the notation K4 () for the minimum cost
required to reach the point & starting from the point . More rigorously, let A(&) be the

set of all controls a(-) such that the corresponding trajectory

y'(t) = a(t),
y(0) = =

passes through the point & at some time 7(a(-)) (i.e., y(7(a(:)) = &). We can now formally

define

(@)
Ky@) = inf / K(y(s), a(s))ds b .
a()eA(x) 0

Optimality Principle: Consider a simple closed curve I' C Q\09Q. It is easy to show for

every x inside I' that

u(x) = jiréfp {Kz(®) +u(@)}. (4.5)

Remark 4.2.1. The proof of this statement is very similar to the proof of Lemma 2.2.4.

This variant of the optimality principle is different in that the infimum is taken not after



o8

some fixed time 7, but whenever the trajectory intersects the curve I'. Because of the
properties of the running cost K and by the continuity of I', that infimum is actually a

minimum achieved at some point &:

Thus, knowing u on T is sufficient to evaluate v at any point inside I'. Moreover, if ' is a

level set of u(x), then, by the Lemma 2.2.11, we know that

I& -2 <dT, (4.6)

where T = % and dy is the distance from ® to I'. The last observation necessary to

construct a computational algorithm is that, if d; is small relative to the size of I', then the
optimal cost Kgz(x) cannot be much smaller than the cost of the trajectory running directly
from & to &. We are now ready to formally state our control-theoretic Ordered Upwinding

Method?.

4.3 Control-theoretic fast method.

Ab exterioribus ad interiora... “From the outside - inwards...”

ST. AUGUSTINE (354-430 AD) writer, philosopher

An excerpt from his Numerical Methods for Boundary Value Problems

Consider an unstructured triangulated mesh X of diameter h (i.e., if the mesh
points x; and xj, are adjacent then |lz; — x| < h).

Let ¢ and z be two adjacent mesh points. Define the upwinding approximation
for U(z) from the simplex zjxxy, :

Vajap(®) = Cgég] {T(OK(z,ac) +(U(zj) + (1 - QU(zr)}, (4.7)

where 7(¢) = ||(Czj + (1 — )zx) — ||, and a; = (ij+(17_(§<))wk)_w-

Remark 4.3.1. The above update formula is basically the same as the upwind formula for
simplex s in (2.27). The difference is that Vg i i (@) is defined even when x; and xj, are

not adjacent to x.

“Since I’ generally is not a level set of u, the logic of the method is more subtle and cannot really be
based on Lemma 2.2.11. Instead, it relies on Lemma 2.2.12, which provides a weaker version of (4.6), but
for any I' “well-resolved” by an underlying mesh X.
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O Far Away

Candidates

. Accepted Front

Accepted

Figure 4.3: The AcceptedFront and the Considered mesh points. The optimal trajectory for & cannot

intersect AF too far away from &, for if ||Z — Z|| > h%, then u(x;) < u(Z).

As before, mesh points are divided into three classes (Far, Considered, Accepted).
The AcceptedFront is defined as a set of Accepted mesh points, which are adjacent to some
not-yet-accepted (i.e., Considered) mesh points. Define the set AF of the line segments
xjxy, where z; and x; are adjacent mesh points on the AcceptedFront, such that there
exists a C'onsidered mesh point &; adjacent to both x; and x. For each Considered mesh

point & we define the “near front” as the part of AF “relevant to x”:
- - Fy
NF(z) = qxjzr € AF | 3% on xjzy s.t. |Z — x| < hF .
1
1. Start with all the mesh points in Far.
2. Move the mesh points on the boundary (y € 02) to Accepted (U(y) = q(y)).
3. Move all the mesh points  adjacent to the boundary into Considered and evaluate

the tentative values

VO = g iRy o2l -

4. Find the mesh point & with the smallest value of V among all the Considered.
5. Move Z to Accepted (U(Z) = V(&)) and update the AcceptedFront.
6. Move the Far mesh points adjacent to & into Considered.

7. Recompute the value for all the Considered x such that & € NF(x)

V(z) := min {V(a:), ol Ve, (:L')} . (4.9)
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8. If Considered is not empty then go to 4.

What I tell you three times is true.

Lewis CARROLL (1832-98)

Motivation: Assume that U(z) = u(x) for any € AF. Suppose that a Considered & is
such that® u(Z) = minggaccepted (). Let a1(-) be the optimal control for & and let y(t)
be the optimal trajectory corresponding to it. By the Lemma 2.2.12, the optimal trajectory
y(t) will intersect AF' at some point & such that | —Z|| < h%. Therefore, & € NF(Z); see
Figure 4.3. We note that & = (& + (1 — {)x for some ¢ € [0, 1] and for some line segment
xzjxr € NF(Z). Using some additional assumptions about the regularity of (sub)optimal
trajectories, we could also show that u(Z) = u(Z) + K (&, %)T(C) + O(h?). If Vu existed
everywhere on the segment xjx, we could also show that u(Z) = (u(z;) + (1 — Q)u(xg) +
K(z, @)T(C) + O(h?). Finally, recalling that we assumed U(x) = u(z) for every mesh

©
point & € AF, we see that

7(¢)

Remark 4.3.2. A careful construction modeled after the above argument could, theoret-

U(@) ~ u(®) ~ CUlz;) + (1 - OU(ex) + K (w ) r(¢) + O(h?).

ically, serve as a “step of induction” in proving that |U(x) — u(x)] = O(h). This is a
reasonable assumption since the optimal trajectory probably passes through O(1/h) sim-
plexes - if it wanders too much it cannot be optimal. Unfortunately, the additional difficulty
with this argument is that u(z;) + (1 — u(zk) = u(Z) + O(h?) only if Vu is everywhere
defined on k. In the presence of a shock, the error in that approximation could, in fact,
be O(h). It is possible to show that, for the problem formulated in section 2.2, an optimal
trajectory will not intersect the shock®, but the “approximate optimal trajectory” might.
Showing that we do not have to interpolate across the shock “too often” would be even a
bigger challenge. This is the main reason for our choosing a different (function-analytic)

approach to prove the convergence in Chapter 5.

5 As prescribed by the algorithm, & is selected for having the smallest V' and not the smallest u (we would
not be computing the numerical solution if we knew u(x) already!). This argument could be made rigorous
by employing v(x), a continuous analogue of V(x). We choose to ignore this issue since the above reasoning
is only motivational. The rigorous proof of convergence to the viscosity solution will be provided in Chapter
5.

6This follows from the entropy requirement that the characteristics can run into shocks, but cannot
emerge from shocks, i.e., no new information is created at the shocks.
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We note that the resulting algorithm

2
e is “single-pass”, since it produces the numerical solution U in O <<ﬁ> M log(M ))

1

steps:

— total of M points to Accept;

2
— every time a mesh point is accepted there are at most (%) Considered points

to re-evaluate;

— a necessity to maintain an ordering of Considered based on V accounts for the

factor of log(M).

e produces the numerical solution U which converges to u as the diameter of the mesh

tends to zero (see the proof in Chapter 5);
e is at most first order accurate;

e works equally well on acute and non-acute triangulated meshes (no additional splitting

section construction is required for the non-acute meshes);

e is applicable for a general anisotropic optimal trajectory problem described in section

2.2.

An extension of this method to R"™ and manifolds is straightforward, since the update

formula 4.7 can be easily generalized for these cases.

Remark 4.3.3 (Three comments on the computational complexity).

1. In the above complexity analysis the calculation of an upwind-update-from-a-single-
simplex value Vg j,wk(m) was counted as a single operation. Of course, in practice,
for a general anisotropic optimal trajectory problem, this value can be computed
only approximately and will require a number of iterations depending on the required
precision. This, in general, is unavoidable, and such a calculation is normally con-
sidered to be a single operation in the analysis of computational complexity for the
control-theoretic algorithms. We note that the optimization problem solved to com-
pute Vg; 2y, () is local (i.e., V; a4 (z) can be computed independent from any other

Va; zm (@) and, thus, should not be confused with the iterations necessary to solve
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the coupled system of non-linear equations (2.27) simultaneously.

More details on algorithmic efficiency analysis can be found in Chapter 7.

2. As we will show in Chapter 5, AF' can be considered as an approximation for a level
set of U. Thus, if the mesh diameter h is sufficiently small, then the number of
Considered points which have to be updated after each acceptance becomes closer

to (%), since the Considered points are immediately adjacent to AF. Thus, as h

decreases, the computational complexity of the method tends to O ((%) Mlog(M ))

3. If the problem were formulated in R", the complexity of the corresponding algorithm

n—1
would be O ((%) M log(M)>, where M still is the total number of mesh points.

Remark 4.3.4 (A comment on the rate of convergence).

Our proof of convergence in Chapter 5 does not provide an estimate for the rate of con-
vergence. We believe that this method is first order; this belief is based on the first order
accuracy of the approximations behind Gonzales-Rofman discretization (used to calculate
Vaj,xy(x)) and is confirmed by the numerical evidence.

Based on our numerical experiments, we note that for sufficiently small h, [|U — ul| =
O(%h). This is not surprising, since %h is the largest distance, over which the first order

accurate approximation might be performed, when ij7$k(m) is computed.

Remark 4.3.5 (A comment on mesh degeneracy).

It is not surprising that the acuteness of simplexes in X is not required. After all, the algo-
rithm uses the mesh connectivity only to determine what becomes Considered, when a new
mesh point is Accepted. All of the upwind-update-from-a-single-simplex values Va:j,a:k(m)
are computed from the simplexes defined by the position of AcceptedFront rather than
from the simplexes present in X.

Nevertheless, in order to prove the convergence of U(x) to the viscosity solution,
we will have to assume that the mesh X cannot be arbitrarily degenerate. Namely, we will
assume that, if h is the diameter of X and h,,;, is the smallest triangle height in X, then
the ratio 7 = h/hp, is bounded for all sufficiently small h. See the proof of Lemma 5.1.6

for details.

Remark 4.3.6 (A comment on the order of Acceptance).

Unlike in Sethian’s Fast Marching Method or in Tsitsiklis’ Algorithm, in the above method
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the mesh points are not Accepted in the order of increasing U. As it was pointed out in
section 4.1, for the anisotropic optimal trajectory problems the fact that the characteristic
for x lies inside the simplex &z jx) does not mean that the gradient is pointing from that
simplex. Thus, it is entirely possible that U(z) < Vg; a4 (x) < U(z;). Nevertheless, we
will show in Lemma 5.1.4 that the order of Acceptance is monotone, albeit in a much weaker

sense than for the single-pass Eikonal solvers.

4.3.1 What are we de-coupling here?

Define the extended set of neighbors
Nk(x) = {azlmz € X | 1 and z3 are adjacent and 3IZ on z1x2 s.t. || —z| < h%}

Note that if we substitute NF(x) by Nk (x), the formula 4.8 becomes

U(x) = a:la:ggﬁ;((m) Veqixs (). (4.10)
This is a discretized version of Hamilton—Jacobi-Bellman Eqn (2.15); more precisely, it
is an “extended” version of Gonzales-Rofman scheme 2.27 and it is easy to show that its
solution U converges to the viscosity solution . The Eqn 4.10 can be solved by successive
approximation techniques described in [24], for example. However, a Dijkstra-like single-
pass algorithm cannot be used to find U since we need to consider all possible directions
of motion for the vehicle starting at the point @ (i.e., U(x) might potentially depend upon
U(y) for all y € Nk(x), including the values U(y) > U(x)). Therefore, the formula 4.8

can be interpreted as an upwinding analogue of Eqn 4.10.

Remark 4.3.7 (A comment on a peculiarity of the method:).

The above comparison with an extended Gonzales-Rofman scheme is just an analogue - not
an equivalence. The numerical values produced by executing the above algorithm will be
different from those obtained by solving the coupled system 4.10.

In fact, this is a somewhat peculiar characteristic of our method. The majority of numerical

methods for static PDEs are based on
1. deriving some consistent discretized version of the equation,
2. proving that there exists a numerical solution for that discretized equation,

3. deriving an algorithm to find that numerical solution,
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4. and proving that this numerical solution converges to the desired solution of the

original PDE as the mesh (or grid) is refined.

As of right now, we do not know of any natural discretized version of the Hamilton-Jacobi-
Bellman PDE, which would be exactly satisfied by the numerical solution U(z) produced
by the Ordered Upwinding Method described in this section. Therefore, the second and the
third stages outlined above are irrelevant, since U(x) is defined constructively (i.e., by an
algorithm to compute it). Unfortunately, since we cannot rely on properties of a discretized
equation, the proof of convergence (Chapter 5) has to rely on the properties of the algorithm

itself and, thus, becomes a real exercise in hand-to-hand calculus combat.
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Chapter 5

Fast Method for the Anisotropic
Problems: the Proof of

Convergence.

The pursuit of pretty formulas and neat theorems can no doubt quickly
degenerate into a silly vice, but so can the quest for austere generalities which are

so very general indeed that they are incapable of application to any particular.

Eric TEMPLE BELL(1883 - 1960)

For the duration of this chapter we will assume that the numerical solution U (x)
is computed for each z € X using the Ordered Upwinding Method described in section 4.3.
For the points @ € Q\ X, U(x) is defined by linear interpolation:

If x is inside €2, but is not a mesh point, then it lies in some simplex xixz2x3.

In that case, 3¢1, (2, (3 > 0 such that

G+C¢+dG = 1,

Gy + Gx2 + (323 = .

The value at @ is defined to be U(xz) = (U (x1) + (U (22) + (3U(x3).

Suppose hpin is the smallest triangle height in the mesh X. We will use the constant

h

n=g.—to characterize the degree of “degeneracy” of the mesh X.

in
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5.1 Properties of the numerical solution

I have had my results for a long time: but I do not yet

know how I am to arrive at them.

KARL FrRIEDRICH GAUSS (1777-1855)

In this section we prove several Lemmas, which are later used in our proof of convergence.
The properties of the numerical solution U demonstrated in this section are similar to the

properties of the value function for the optimal trajectory problem (section 2.2.2).

5.1.1 Is NF(x) big enough?

Suppose the mesh point Z is about to be Accepted. This means that

V(&) = mingecconsiderea V () and therefore U(Z) = V().
Lemma 5.1.1. For every Considered mesh point © define

Wia) =, min min (K(@,a)7() + (Ule) + (1= OU@)} (1)

where 7(¢) = ||(Cz1 + (1 — {)z2) — ||, and a = ((:1:1—:1:)4-7((1{)()(:132—:1:)_

Claim: U(Z)=V(Z) = W(Z).

Proof. First of all, U(Z) = V(&) simply because & is about to be Accepted.

Recall that V() for every Considered mesh point x is computed by the formula 4.8 :

V)=, min o omin (K(@.a)7(C) + (CU) + (L= OU2)

where 7(¢) = ||(Cz1 + (1 = ()x2) — ||, @ = g(wlfa")t((l{)()(msz), and NF(x) is the part of

the AcceptedFront “relevant to x”:

K
NF(z) = {azlmz € AF | 3% on the line segment xjz2 s.t. | — x| < h%} .
1

Since NF(x) C AF we immediately see that for any Considered mesh point x
V(z) > W(x). (5.2)
Let 122 € AF and ¢ € [0,1] be such that the minimum in the formula 5.1 is attained, i.e.,

if £ = (Cx1+ (1 — {)x2) then

W (@) = K (%, %f;“m:ﬁ — & + (CU (1) + (1 — OU(x2)). (5.3)

&
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Let 3 be the Considered mesh point adjacent to both 1 and 2. Then U(Z) = V(&) <
V(x3) since Z is about to be accepted.

V(x3) is also computed by the formula 4.8; thus,

LTS 16— wg + (CU(@r) + (1 - OU(ea)) <

< Kah+ ((U(@1) + (1 - OU(x2)) - (5.4)

Inequality is the cause of all local movements.

Leonardo da Vinci (1452-1519)

Combining the inequalities 5.2, 5.3, and 5.4 we obtain

Kil|2 —z| + (CU(z1) + (1 = Q)U(z2)) < W(Z) < V(
< V(zs) < Koh + (CU(z1) + (1 = QU(z2)),

&
A\

which implies || — Z| < h%. Therefore, z1x2 € NF(Z) and W(z) = V(). O

5.1.2 Uniform upper bound.

An expert is the one who predicts the job will

take the longest and cost the most.

ARTHUR BLocCH

Lemma 5.1.2 (Uniform upper bound). If Q is conver and d(x) is the distance from

x € Q to the boundary OS2, then

U(z) < d(z) K2 + go. (5.5)

Proof. If © € 9 then the inequality trivially holds, since 0 < g(x) < ¢o.

If x is a mesh point inside 2, we prove the lemma by induction: assume that the inequality
5.5 holds for all the mesh points, which are on the AcceptedFront just before £ = Z is
Accepted. Consider a (possibly non-unique) shortest path from Z to the boundary. By

the properties of the distance function d(-), that shortest path is a straight line. Moreover,
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suppose that line intersects the segment of AcceptedFront xixs € AF at the point & =

(Czy + (1 = )x2). It is trivial to show that d(&) = d(#) + ||# — Z|| !. Using Lemma 5.1.1,

u®) = W(z) < K(z, & — 2| + (CU(z1) + (1 - QU (22)) -

-
|2 —z|
Based on the assumption of induction,

U®@) < Ky||2 — & + ((K2d(z1) + g2) + (1 = () (Kad(2) + ¢2).

By the convexity of €2, the distance-to-boundary function d(x) is concave and d(&) >

Cd(x1) + (1 — {)d(x2). Therefore,
U@) < K| — 2| +d(@)) + 2 = Ka2d(®) + o,

which completes the proof by induction. (The base of induction is obvious, since only the
mesh points on the boundary 09 are already Accepted when the algorithm starts.)
If « is inside €2, but is not a mesh point, then it lies in some simplex x1x2x3. In that case

3¢y, (2,3 > 0 such that

G+¢+dG = 1,

Gz + G2 + (323 = T

The value at @ is defined to be U(x) = (1U(x1) + (U (x2) + (3U(x3). Once again, using

the concavity of the distance function,

U(x) < G1(Kad(z1) + q2) + C2(Kad(z2) + q2) + (3(Kad(z3) + q2) <
< @+ Kz (Gd(z1) + Qd(z2) + Gd(zs)) < Kad(z) + go.

O

Remark 5.1.3. The obtained bound is “uniform” since it is independent of the diameter
h of the mesh X. We also note that a uniform upper bound on U can be derived even
for a non-convex 2 assuming that n remains bounded and the boundary 02 is adequately

represented by the mesh as h tends to zero.

'Recall that the distance function is the viscosity solution of the Eikonal equation ||d(a)|| = 1 with the
zero boundary conditions on 0f).
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5.1.3 Relaxed monotonicity of the Accepted.

The single-pass methods for the Eikonal equation discussed in sections 2.2.10 and
3.4.2 were based on the causality property of the underlying discretizations. The ordering
stemming from that causality was very simple: “x; is Accepted after x;” implied “U(z;) >
U(xj)”. Unfortunately, this implication is false for the method described in Chapter 4 for
the more general Hamilton-Jacobi-Bellman PDE (2.15). As discussed in section 4.1, the
gradient and the characteristic directions in that case are different. Thus, even if U(x;) was
computed by an upwinding formula from the simplex x;xjx) based on U(x;) and U(zyg),
it is still possible that U(z;) < U(z; ).

However, a weaker monotonicity property can still be formulated, based on the
evolution of AF' during the computation. Recall that AF' is defined as the set of the line
segments ¢ ;T, where x; and xj, are adjacent mesh points on the AcceptedFront, s.t. there
exists a Considered mesh point ; adjacent to both z; and . Define Ual (and UaE )
as the min (max) value of U on the set AF. Note that, since U is defined by the linear
interpolation, both UAL and UAL “are attained at the mesh points.

The following definitions are useful for discussing the evolution of AcceptedFront:

e AFg is the state of AF immediately before Z is Accepted.

AFQ_Z

AF5 .. .
i, and UnmeX are the minimum and maximum values of U on AFg.

o U
e AFT s the state of AF immediately after & is Accepted.

T T .. . T
o UA™ and UAF" are the minimum and maximum values of U on AFT.

Lemma 5.1.4 (Monotonicity of AF’s evolution.). Suppose hp, is the smallest triangle
height in the triangulated mesh X on Q. Then the following weak monotonicity results hold
for the numerical solution U:

(i)

AF{ﬁ AF5

Uil + bnin K1 : < U(E) < U, ;T + hK>. (5.6)
(i) )
Ui - < UALE. (5.7)
. AF.
(iii) If x; is Accepted before xj then U:::;?z : < Umi;v]
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AF@
min

+hK2 then UAFw S UAFm +hK2

max min

(iv) If Uni® < U

Proof :

(i)

Let 1 be a mesh point on AFgz such that U(zq) = U?nff. Since it is on AcceptedFront
immediately before & is Accepted, there exists at that time a Considered mesh point xa
adjacent to 1. Thus, V(xs) < U(x1) + K(x2, %)sz — x1]|. Since Z is about to
be Accepted, U(z) =V (z) < V(xsz) < Ufz? + hK5. On the other hand, U(Z) =V (Z) =
U&) + K (z, -Z-Z

,Z2-2)& ~ 7| for some & € AFg. Thus, U(#) > UNE 4 hin Ky
(ii)

min
As x is Accepted, several mesh points might be removed from the AcceptedFront, but

the only point possibly added to the AcceptedFront is & itself. (Z will be added if there
Az < U(&), it follows that

min

still is a not-yet- Accepted mesh point adjacent to it.) Since U
UtE < gArt,

min min

(iii)

Trivially follows by induction from the inequality 5.7.

(iv)

Since & is the only point possibly added to the AcceptedFront,

AF@

UAFY < max (Une, U@)) < Ui

T
max min +hKy < U;?zf‘n + hKs.

O

Remark 5.1.5. It immediately follows from the above Lemma that if go < ¢ + hK9 then
U :,‘jx <U ﬁfn + hK>5 at all times. Thus, if the exit cost ¢ is approximately constant on 052

then the AF will be approximately a level set of U throughout the computation. Moreover,

even if ¢ is not approximately constant, the AF will still approximate a level set of U as

AF
min

soon as U, ;. becomes bigger than (g2 — hK?2).

5.1.4 Uniform Lipschitz-continuity.

Lemma 5.1.6 (Uniform Lipschitz-continuity).

(i) If 1 and x2 are two adjacent mesh points inside Q then

|U(z1) —U(z2)| < Liflz1 — 22, (5.8)
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where L1 = nKo.

(1) Let Ly = nLy. If VU (z) is defined for some © € Q\0Q such that d(x) > h (i.e.,

is not in a simplex immediately adjacent to 0Y) then

IVU@)|| < L. (5.9)

(15i) Finally, for arbitrary points x1,x2 € Q,

|U(z1) —Ul(z2)| < Laflz1 — z2f|. (5.10)

Proof :

(i)

Suppose z1,x2 € Q\0NQ are two adjacent mesh points. Without loss of generality, assume
that &1 was Accepted before xs. Thus, immediately before xo is Accepted, &1 will still be
on the AcceptedFront and

L1 — &L

S Kg”il}l — ZBzH + U((Bl) S L1H£B1 — 2132“ + U(iBl)

U(zz) < K(mz, H)He’vl z2|| + U(z1) <

Since U’s are not necessarily Accepted in the ascending order, it is not generally true that

U(x2) > U(x1), but from Lemma 5.1.4,

Uler) < UL L hk, < U2 g, <

mwn min

< U(z2) + hKy = U(z2) + nKohpmin < U(x2) + Li||lz1 — 22|,

which concludes the proof of the inequality 5.8.

(ii)
Let x1,x2,x3 be the vertices of the simplex in the mesh X which contains . Since
d(x) > h, we know that x1, x2, and x3 are also inside €2, i.e., not on the boundary. Inside
each simplex, U is defined by the linear interpolation and VU is a constant. Whatever
the direction of VU, a straight line parallel to it passes through one of the vertices and
intersects the opposite side of the triangle. Without loss of generality, assume that that line

passes through @1 and intersects the side xox3 at the point x4 . Since x4 lies on xaxg,
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either (z2 — 1) - (x4 — 1) > ||®4 — z1]|? or (23 — 1) - (T4 — 1) > || T4 — 21]|*. Without

loss of generality, assume the latter. Since |4 — Z1|| > hmin,

VU |hmin < [VUl[|2s — 21| = |u(za) —u(@1)] < [u(®s) —u(@1)] < Lih.
Thus,
h
VU] < Llh = Ls.
min
(iii)
Obvious, since U is piecewise linear, with the slope bounded by L in every simplex. O

Remark 5.1.7. These results seem somewhat disappointing since the true value function u
has the Lipschitz constant L < K5,. A better estimate for L can be obtained for the small
enough h’s, utilizing the smoothness of the running cost function K. A better estimate for
Ly can be obtained for the small enough h’s if the exit cost function ¢ is sufficiently smooth.
However, to prove the uniform convergence of U to the value function u, it is necessary to
show that some such Lo independent of h does indeed exist. The dependence of Lo upon 7
is not dangerous: if the triangulated mesh X, does not become more and more “degenerate”

as h, — 0, then 7, will be bounded.
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“The fact that it works is immaterial...”

A wverdict overheard after a joint Math/Applied Math Colloguium

5.2 Convergence to viscosity solution.

Without further ado,?...

Theorem 5.2.1 (Convergence of numerical method). Consider a sequence of meshes

{X,} such that h, — 0, but n" = h,rhr. < nasr — oo. Let U™ be the approximate solution

min

obtained on the mesh X, by the method described in Chapter 4.

Claim: As h, — 0 U" — u uniformly, where u is the viscosity solution of the equation

(2.15).

Recall that, according to the traditional definition (see [15]), a bounded, uniformly
continuous function u is the viscosity solution of equation (2.15) if the following holds for
each ¢ € C°(Q) :

(i)
if u — ¢ has a local minimum at g € 2 then

éréikgl{Vgﬁ(wo) ca+ K(zg,a)} <0; (5.11)

(ii)
if u — ¢ has a local maximum at ¢ € €2 then

Cgéig{Vgﬁ(:l:g) -a+ K(zg,a)} > 0; (5.12)

Proof. Since {U"} are bounded and uniformly Lipschitz-continuous, by the Arzela—Ascoli
theorem, there exists a subsequence {X,} of the sequence {X, } such that A, = 0 as p = oo
and a function u such that UP — wu uniformly as p — oo. Boundedness and uniform
continuity of v immediately follow from the properties of UP.

(i)

Consider any function ¢ € C2°(Q2) and suppose that (u — ¢) has a strict local minimum at
xg € ). Define Bs to be the closed ball of radius § around xg. Then there exists some

6 > 0 such that Bs C 2 and x© € By implies

I would like to thank L.C.Evans and J.A.Sethian for their comments and suggestions regarding the
general structure of this proof.
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(u— @) (@o) < (u—¢)(@). (5.13)
If Dy(x) is the matrix of second derivatives of ¢(x) then Iy > 0 such that ||Ds(x)|2 < p

for all € Bs. Let now xoP be a minimum point for (UP — ¢) over By; from (5.13) and

from the uniform convergence of UP’s it follows that

lim a’,'()p = Io. (514)
p—00

If zo? is not a grid point of X,,, there exists a unique simplex s containing xo”. Define z”
to be the vertex of s closest to &o?. (We define &1? = xo? if xo? is a mesh point.) Since ¢

is smooth and U? is linear on s, we know that VUP(xoP) = V(xoP) and

2
(0~ $)(@r?) < (U7~ )(wo?) + 12 (5.15)

Moreover, using the inequality 5.15, we obtain for every € By,

p(x) — p(x1”) = (¢(x) — d(@0”)) + (P(@0”) — P(17)) <

2
< (UP(@) ~ UP(@e?)) + (U7 (@o?) — UP(ar?) + L200) =
2

_ UP(z) — UP(21?) + % (5.16)

Since |lzo? — x1?|| < hyp, it is also clear that lim,_, x1” = xp. So, for big enough p,

hp% < §; thus, by the update formula 4.7, 3P € AFg,» ) Bs such that

UP(xz1?) = p K (21", a?) + UP(ZP), (5.17)
P
where 7, = ||Z — x1P|| and a” = ﬁ

Using the smoothness of ¢, the inequality 5.16, and the equality 5.17, we obtain

Vé(z1?) - a” + K(z1?,a”) < p(x1” + mpa”) — p(z1”)

+ K(xz1?,a?) + 1ppu <

Tp
2
UP(21? + 1oaP) — UP(xq?) + Ho”
< (1 Tp ) (1) 2 +K($1p,ap)+7'pu:
Tp
UP(&P) — UP(x1P) + 1, K (x1?, a? h,?
| UNER) U)K et at) |y
Tp 27y
Mhpz
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Since & lies on the AFg,» and 7, = || —x,P||, it is at least as big as the minimal triangle
height in the mesh X, i.e., 7, > %p On the other hand, 7, < hp% because ¥ € NF(x1?).
Combining these bounds with inequality 5.18, we see that

n , Ko

Vé(@i?) o + K(@r?,a?) < uly + 30 )hy. (5.19)

The sequence {aP} has to have a subsequence converging to some vector b € Sy; we
restrict our attention to that subsequence, but will still use the subscript p to avoid further
cluttering of the notation. Now (finally!) we can use the continuity of K, smoothness of ¢

and the uniformity of convergence of U? to pass to a limit as p — oo in the inequality 5.19:
V¢($0) b+ K(m(), b) < 07

which completes the first half of the proof, since

cgéig{V(]b(:l:g) -a+ K(zo,a)} < Vo(xo) b+ K(xo,b).

(ii)
Consider any function ¢ € C°(£2) and suppose that (u — ¢) has a strict local maximum

at g € ). Define B;s to be the closed ball of radius § around xg. Then there exists some

6 > 0 such that Bs C 2 and x© € By implies

(u— @) (wo) > (u—¢)(z). (5.20)

If Vé(xg) = 0 then the inequality 5.12 is trivially satisfied. Thus, we will further assume
that [|[V(z)|| > v > 0 for all ® € Bs. If Dy(x) is the matrix of second derivatives of ¢(x)
then Jp > 0 such that |D2(x)||2 < p for all € Bs. Let now o be a maximum point for

(UP — ¢) over By; from (5.20) and from the uniform convergence of UP’s it follows that

lim a’,'()p = Io. (521)
p—00

If zo? is not a grid point of X,,, there exists a unique simplex s containing xo”. Define x”
to be the vertex of s closest to &o?. (We define &1? = xoP if 2oP is a mesh point.) Since ¢

is smooth and U? is linear on s, we know that VUP(z¢?) = V(ze?) and

2
(U7~ §)(@r?) > (U7 — §)ao?) — P20 (5.22)
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Moreover, using the inequality 5.22, we obtain for every x € By,

p(@) — p(®1”) = (¢(@) — (o)) + (d(m0”) — P(217)) >
2 (UP(2) = UP(zo”)) + (UP(z0”) — UP(21") — ﬂ) =

= UP(z) — UP(z1") —

(5.23)
Since ||xo? — x1”|| < hp, it is also clear that lim, . 217 = @o.

If you board the wrong train, it is no use running along the corridor in the other direction.

DIETRICH BONHOEFFER (1906 - 1945) GERMAN THEOLOGIAN

As proven in section 2.2.6,

Cflfgg}l{vﬂwo) a+ K(zo,a)} = aefgl%fgno{vﬁﬁ(wo) a+ K(zo,a)}. (5.24)

Thus, to prove (5.12), we only need to consider a € Sf’mo, i.e., only a such that

K K
a-Vo(zo) < —Eiuwwo)n < —uf;. (5.25)

Suppose a particular a € Sf L0 was chosen. We would like to show that, for sufficiently

small hy,

if we start at ©1? and go some distance 7, = O(hyp) in the direction a, then we will have to

intersect the AFg » (*)

If the local maximum were attained at the mesh point (i.e., the case 1P = xoP)
and the test function ¢ were linear, then (*) would be almost obvious: ¢ would be linearly
decreasing in the direction a, so would be U? because of the local maximum condition, and,

as we know from Lemma 5.1.4,

AFgp  h

UP(z) > U +fm

min

for every mesh point = € X, Accepted after the point x1”. Since ¢ is generally not linear
and x1? # xoP, we will have to be more careful.
Suppose we start moving from 1" in the direction a for some time ¢,. Using the

inequality 5.23, the smoothness of ¢, and the inequality 5.25, we obtain
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UP(z1” +tpa) = UP(21") < (P(21" + ha) — d(x1”)) + —=

tp? hy? K hp? + tp?
< (tp(Vo(@e?) @) + B2y 4 B2 <y, L 2 T (5.26)
2 2 K 2
In order to prove (*) we will need the following inequality to be satisfied:
K hy? +t,°
—vt,— + u”iﬂ < —h,Ks. (5.27)
K5 2

Let t, = Ahy,. We will now show that the constant A can be chosen such that (5.27) holds

for small enough h,. Indeed, (5.27) can be rewritten as

1+ A2 K
h? (u +2 ) + hy <K2 - VAFD <0 (5.28)

If A is such that ( Ky —vALL) > 0, then (5.27) is satisfied for all the
K>

K 2
A— — Ko )| —— | .
%EPC’@ QMHAJ

2
Thus, choosing any A > (VK—K21>, we ensure that (5.27) is satisfied for the sufficiently small
hp. Combining this with the inequality 5.26, and using the monotonicity result in Lemma

5.1.4, we see that

Ale P
min ’

Up(a:lp + tpa) < Up($1p) — hpK2 < U

i.e., the point (z1” + tya) cannot be inside the AFg,». Since x1? is inside AFg,», that

means that (*) holds: there exists some 7, € [0,1,] such that
ZP = (x1? + 1pa) € AFg,».
By the Lemma 5.1.1,
UP(z1?) = WP(21?) < 1, K (21", @) + UP(ZP), (5.29)

The remainder of the proof is similar to what we have done to prove (i).

Using the smoothness of ¢, the inequality 5.23, and the inequality 5.29, we obtain
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V(x:?) - a+ K(z?,a) > L&) = d@i7)

Tp
2
UP(z1? + 1ya) — UP(@1?) — 202
> Ve 4 18) ~UP@) = 757 | ge(gyr a) — o =
Tp
_ UP(&P) — UP(z1P) + 1K (217,a)  ph,’
= — — Tplt =
Tp 27y

> M (5.30)

Since & lies on the AFg,» and 7, = || —x1P||, it is at least as big as the minimal triangle
height in the mesh X, i.e., 7, > % On the other hand, 7, < ¢, = Ah,, where A is a
constant chosen for this particular ¢, but independent of h,. Combining these bounds with

inequality 5.30, we see that

Vé(zi?) a+ K(z?,a) > —u(g + A)h,. (5.31)

We can now use the continuity of K, smoothness of ¢ and the uniformness of convergence

of UP to pass to a limit as p — oo in the inequality 5.31:
V¢($0) ra+ K(m(), a) > 07

which completes the proof of inequality 5.12, since @ was chosen to be an arbitrary vector

n S’f’wo.

In this proof we have several times passed to a subsequence. Suppose some other
subsequence of U" converges to a different limit . The above argument could be repeated
for that subsequence to prove that u also satisfies (5.12) and (5.11). The uniqueness of the
viscosity solution (proven in [16], [15]) implies u = @; thus, the entire sequence U” converges

to w uniformly as r — oo. O

Remark 5.2.2. Unfortunately, the above proof demonstrates only the fact of convergence,
yielding no rate of convergence estimates. Another approach, used as a motivation in section
4.3, would permit to compute error bounds, but, to the best of our knowledge, it would also

require some additional assumptions about the regularity of e-suboptimal controls.

Remark 5.2.3. This proof uses the continuity of the running cost function K, but not the

Lipschitz-continuity. Thus, if the viscosity solution can be defined for K € C(€Q) then the
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above proof will still be valid. The majority of the control-theoretic papers, which we are
referring to in this work, require the running cost K (or, equivalently, the speed of motion
f) to be Lipschitz-continuous. Nevertheless, the value function u can be defined for a much
broader class of control problems, including those, for which K is discontinuous. Some
examples of our method applied to such problems can be found in Chapter 8. Even though
we do not have a proof of convergence, the numerical evidence confirms that the method
described above works correctly even in that general case. This is not surprising. After all,
as noted in section 2.2, Bellman’s optimality principle is valid even when running cost is

very ill-behaved, and our numerical methods merely mimic the logic of that principle.

Remark 5.2.4. The generally accepted definition of the viscosity solution (see [16], for
example) uses the test functions ¢ € C'(Q2). However, as shown in [15], the definition using
the test functions ¢ € C°(Q) is equivalent. This enabled us to use the upper bounds on

the second derivatives of ¢ in the above proof.

God forbid that Truth should be confined to Mathematical Demonstration!

BLAKE

NB: This proof of convergence, as well as the preceding lemmas, can be easily repeated
for the corresponding method in higher dimensions. Moreover, it is our not-so-secret belief
that the following general conjecture is true:

If the update formula 4.7 in the description of the method is replaced by any other update

formula such that
i the update formula is consistent (converges to the PDE as h — 0),

it the update formula is upwinding (the update is computed/accepted only from the

simplex, which contains the characteristic direction),
iii  the update formula is stable (there exists a uniform bound for U),

then the resulting numerical solutions will converge to the viscosity solution of Hamilton-

Jacobi-Bellman PDE.

This conjecture is the basis for the hybrid methods discussed in section 6.2.
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Chapter 6

Hybrid Methods for Anisotropic

Problems

In Chapter 4 we introduced a new single-pass method for solving the Hamilton-
Jacobi-Bellman PDE 2.15 corresponding to the anisotropic optimal trajectory problems
described in section 2.2. We will now explore the correspondence between these problems
and a class of the anisotropic front expansion (contraction) problems described in section
3.2.

Our goal in this exploration is twofold:

e to determine a set of the anisotropic front expansion (contraction) problems, which

can be solved efficiently by the Ordered Upwinding Method introduced in Chapter 4;

e to use this correspondence to construct a family of hybrid Ordered Upwinding Meth-

ods utilizing the finite difference operators described in section 3.4.

Pereant qui ante nos nostra dixerunt.

“To the devil with those who published before us.”

AELIUS DONATUS (4TH CENTURY)

Quoted by St. Jerome, his pupil

The phenomenon of anisotropy is one of importance in many application domains.
After deriving the formulae in section 6.1, we have found that many of these issues had

already been the focus of attention in geometric optics [33], geophysics [37, 17], tomography
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[26], and crystal growth [52, 49]. Thus, we are unsure if any of the results in section 6.1 are
original.

We will try to point out the connections to the terminology and results in prior
publications whenever possible'. Our goal is to emphasize the connections in an application-
neutral manner, concentrating on the properties of the particular class of static Hamilton-

Jacobi PDEs.

6.1 Front propagation vs. control theory:

the direct mapping

Recall from section 3.2 that if the front is only expanding (or contracting), its

evolution can be fully described by the PDE :

IVul@)lF (2 o) =1,

u = 0 on [y,

where F' is the speed of the front in the direction normal to itself, 'y is the initial position
of the front, and u(x) is the time when the front passes through the point @.

If F' depends only on @, the above PDE reduces to the Eikonal equation, which
(as shown in section 2.2.4) can be interpreted from the control-theoretic perspective as an
equation describing the isotropic optimal trajectory problem.

Our goal for this section is to derive a corresponding interpretation for a wider
class of front propagation problems. We recall from section 2.2.5 that the min-time optimal
trajectory problem is described by the Hamilton-Jacobi-Bellman PDE 2.24 :

max{(Vu(z) - (—a))f(z,a)} = 1.

acs;

The Hamiltonian in the above equation is convex in Vu. Thus, it is clear that the control-
theoretic interpretation of the PDE 3.2 is possible only when the Hamiltonian H(Vu,x) =

Vul|F (@, 2% ) is also convex in the first argument?. For these two problems to be
IVull

Incidentally, the above quote from Aelius Donatus is also often attributed to Abinitus Provenius (Ist
Century B.C.).

2If the Hamiltonian is not convex, the front expansion problem can be restated in terms of the differential
games theory [20, 5]; we are currently investigating the applicability of our single-pass methods to these more
general problems.
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equivalent, the Hamiltonians have to be equal:

Vu(z) \
Vul@)lF (2 T4 ) = max (Vu(e) - (~a))f (@ @)
or, equivalently, functions F' and f have to be such that
F(z,n) = max{(n - (—a))f(z,a)}. (6.1)

This immediately yields the relationship between the speed functions F' and f discussed in

the next section.

Common sense and a sense of humor are the same thing, moving at different

speeds. A sense of humor is just common sense, dancing,.

CLIVE JAMES, Australian writer

Remark 6.1.1. One should be careful to distinguish these two speed functions: F(z,n) is
the speed of the front’s movement in the direction normal to itself? (n = %), whereas
f(x, a) is the speed of the vehicle’s motion? in the direction @. Correspondingly, the correct
n is fully determined by the gradient direction of the function u(x), whereas the optimal
a € S is determined by the direction of the characteristic passing through the point  and,
therefore, is a function of the particular Hamilton-Jacobi-Bellman equation. (See Figure 4.2

for the illustration of the gradient and characteristic directions for an expanding ellipse.)

Remark 6.1.2. The difference between these two formulations is less apparent for the
Eikonal equation since in that special case the characteristic direction is always exactly the
opposite of the gradient direction (provided, of course, that the gradient is defined at the
point) :

F(@,n) = max{(n- (~a))f(2)} = f(z) = F(a).

acs;

6.1.1 The Alpha and Omega of Anisotropy

In R?, it is more convenient to rewrite the equation 6.1 in terms of trigonometric

. cos(a) cos(w) . .
functions. Let a = and n = . We will further abuse the terminology
sin(«) sin(w)

3In wave physics F(x,n) corresponds to the “phase velocity” if o is the direction normal to the wavefront
[17]. In crystalline variational problems F'(x, n) corresponds to the “surface free energy” if m is the direction
normal to the surface [52].

“In wave physics f(x,a) corresponds to the “group velocity”, i.e., the speed, with which a blob of energy
is moving in the direction a [17].
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and define F'(z,w) = F(x,n) and f(z,a) = f(x,a). The condition for the equivalence of

the front expansion and optimal trajectory problems can be rewritten as

F(z,w) = ag{lg;(ﬂ{cos(w —(a+n))f(z,a)}, (6.2)

Remark 6.1.3. This formula already shows how to cast any min-time optimal trajectory
problem as a front expansion problem. However, we are interested in finding the inverse

mapping as well.

In order to obtain the geometric interpretation of the relationship between f and

F,welet f=a+ 7 and g(z,[) = f(x,5 — 7) = f(x,a) and rewrite Eqn 6.2 as:

F(,w) = max {cos(w—Blo(a. 5)) (6.3)

Now consider the vehicle’s speed profile® - the polar coordinates plots p = f(x,0) and
p = g(x,0). The later is a flipped (center symmetry applied) version of the former; see

Figure 6.1.

15-

051

Figure 6.1: Two examples of vehicle’s speed profiles p = f(8). The dotted line shows the “flipped” version
of the profile, i.e., p = g(0) = f(6 + ).

The formula 6.3 means that F(x,w) can be obtained by projecting the speed

profile p = g(x,0) onto the line parallel to the vector n, and then by taking the maximum

5In wave physics this speed profile is often referred to as a “group-velocity curve”, “ray surface”, or
“Impulse-response surface” [17].
The corresponding object in crystalline variational problems is the “Wulff shape” - the shape, which mini-
mizes the free surface energy for a fixed volume with no additional constraints [52].
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of this (signed) projection. Correspondingly, the optimal /3 is the one, which maximizes the
projection onto n of the vector (—g(z, f)a).

Thus, if the vehicle’s speed profile is strictly convex then there exists precisely one
optimal S for each w; moreover, each (3 is optimal for some w, i.e., the 8 — w correspondence
is one-to-one and onto. It is easy to show that if %g(m, B) exists and w(f) is the angle for

which § is optimal, then the tangent to the vehicle’s speed profile at the point (—g(x, 5)a)
cos(w(B))

is perpendicular to the vector n = ‘ and the distance from that tangent line to
sin(w(p3))

the origin is F'(z,w(/)). This provides a geometric recipe for building the front propagation

speed profile p = F(zx, ) using the vehicle’s speed profile (see Figure 6.2)°.

Whoever proves his point and demonstrates the prime truth geometrically

should be believed by all the world, for there we are captured.

ALBRECHT DURER (1471-1528)

AN Y

05

W2

N

-1.51

Figure 6.2: Using the vehicle motion speed profile to construct the the front propagation speed profile.

Under these assumptions we can also derive an explicit formula for w(3): since § is optimal

for that w, %(cos(w — B)g(x,B)) = 0, which yields

359(, )
9(z,p) |’

This geometric construction is very common in tomography; the formulas 6.2 and 6.4 are closely related
to the Radon transform [26].

w(p) = B — arctan ( (6.4)
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Since both functions F' and ¢ are positive and F'(x,w) = cos(w — f(w))g(z, f(w),
it is clear that ||w —f(w)|| < 7/2. Consider any @ # w form the interval (8(w) — /2, f(w) +
7/2). Since the relationship is one-to-one and onto, 5(w) # B(®); thus, F(x,®) > cos(w —
B(w))g(z, f(w) for all such @. Therefore, g can be conversely defined in terms of F':

[z, 0) = g(x,B) = min F(z,w)

I 6.5
we(B—r/2,8+7/2) cos(w — B) (6.5)

If F is smooth at the point then we can also derive an explicit formula for 5(w):

since w is optimal for that 3, 2 ( F(Zw) ) = 0, which yields

cos(w—0)
2F
f(w) = w + arctan <M> .

Flz.w) (6.6)

The geometric interpretation of Eqn 6.6 is simple. Consider the front propagation

speed profile - the polar coordinates plots p = F(x,0). For each point F(x,w) cos(w) =
sin(w)

F(2,w)n on the speed profile, draw a straight line through that point perpendicular to the
vector m. The envelope of these lines is the figure p = g(x,0), i.e., the “flipped” vehicle’s
speed profile p = f(x, ) (see Figure 6.3, for example). More precisely, the envelope will yield
the “flipped” convex hull of the original vehicle’s speed profile; thus, the optimal trajectory
problems with the different vehicle’s speed functions will yield the same Hamilton-Jacobi-

Bellman equation provided the speed profiles have the same convex hull”.

In general, if the vehicle’s speed profile p = f(x,0)

e is smooth and strictly convex then the functions w(«) and «a(w) are one-to-one and

onto (Figure 6.4A);

e is convex, but not smooth then the same « will be optimal for multiple w’s (Figure

6.4B);

e is convex, but not strictly convex then multiple o’s will be optimal for the same w

(Figure 6.4C);

"This geometric construction is very common in tomography; the formulas 6.5 and 6.6 are closely related
to the inverse Radon transform [26].
In wave physics [33], formulas expressing the relationship between the group speed and the phase speed
(similar to (6.2), (6.4), (6.5), and (6.6)) were known as early as 1837!
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151 15

-15F -15f

Figure 6.3: Using the front propagation speed profile to construct the the vehicle motion speed profile.

cos(a
e is non-convex then only a’s such that f(z,«) ] E )) is on the boundary of the
sin(a

convex hull of the vehicle’s speed profile will be optimal for some w (Figure 6.4D).

Remark 6.1.4. Let

Fi(z) = min F(z,w), Fy(z) = max F(z,w),

w w

and
fl(a:):mainf(m,a), fQ(w):mS‘Xf(maa)'

Then it follows from the formula 6.2 that
Fy(x) = fo(x), and Fy(x) > fi(x).
If the vehicle’s speed profile p = f(x, ) is convex, then it is also easy to show that F;(x) =
fi(x) since each « is optimal for at least one w.
6.1.2 Huygens’ principle: the modified version.

The correspondence between F' and f suggests an alternative application of Huy-

gens’ principle to the front propagation problem®:

8An example of similar modified Huygens’ construction using Wulff shapes instead of circles to model
the growth of thin films can be found in [49].
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N
BT

Fig.6.4C Fig.6.4D

Figure 6.4: Speed profiles: strict convexity, convexity, and smoothness.
e at every point & € Iy draw the “flipped” vehicle’s speed profile p = g(x, 0) scaled by
the factor At;
e take the envelope of all these profiles to obtain an approximation of 'y A¢;

e the limit of such approximations as At — 0 provides an equivalent definition of the

front’s propagation.

Remark 6.1.5. In the canonical definition (Figures 6.5A and 6.5C) a circle was drawn at
every point of the front, but the radius of that circle depended upon the orientation of the

front at that point; in the modified definition (Figures 6.5B and 6.5D) the profile drawn
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at each point might be more complicated, but its shape and size are independent of the

orientation of the front.

Remark 6.1.6. The fact that the “flipping” of the vehicle’s speed profile is required stems
from the fundamental difference between Huygens’ principle and Dijkstra’s method (based
on the optimality criterion): Dijkstra’s method looks for the fastest way to reach the front
starting from the given point & (and using the speed profile information supplied at the
point ), whereas Huygens’ principle suggests looking for the time it will take to advance

the front past the point & (using the speed profile information supplied at the front).
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Fig.6.5A: canonical Huygens’ construction Fig.6.5B: modified Huygens’ construction

for an expanding ellipse. for an expanding ellipse.

Fig.6.5C: canonical Huygens’ construction Fig.6.5D: modified Huygens’ construction

for an expanding droplet. for an expanding droplet.

Figure 6.5: Fronts expanding in homogeneous anisotropic medium: the canonical and modified Huygens’

constructions.
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6.2 Numerical methods for front propagation problem

The general front propagation problem can be treated numerically using a number
of techniques including the marker-particle, volume-of-fluid, and level-set methods. All of
them have certain disadvantages, which make it desirable to use a different (more efficient)
method for the case when the Hamiltonian is convex and the normal speed F' is finite,
bounded away from zero, and strictly positive (or strictly negative). As shown above, if F
is smooth, the vehicle’s speed function f can be defined in terms of F' (as in Eqn 6.5), which
will yield the equivalent min-time optimal trajectory problem. Therefore, the single-pass
control-theoretic Ordered Upwinding Method described in Chapter 4 can be used in this
case.

Here, we develop a family of different single-pass methods for this class of front
expansion (contraction) problems. The key idea is that any consistent upwind finite dif-
ference discretization can be used to compute an update-from-a-single-simplex Vg J;L-k(ar:)
Our derivation of such discretizations generalizes the approach used in defining the Fast

Marching Method on unstructured meshes (section 3.4.3).

6.2.1 Upwind finite difference discretization

Consider an unstructured triangulated mesh X of diameter h (i.e., if the mesh

points x; and xj, are adjacent then ||z; — x| < h). Let x; and x be two adjacent mesh

points and choose some other mesh point € Q\02. Define the unit vectors Py = %
and Py = LTk Assume that P; and P> are linearly independent and consider the

-kl
2 x 2 nonsingular matrix P having P; and Ps as its rows. Let v,(x) be the value of the

directional derivative for the direction P, evaluated at the point . Assuming that the

function w is differentiable at «, we have PVu(x) = v(x), where v(z) = U1Ei13; . Recall
V2\ T
that the front propagation Eqn 3.2 can be written as ||Vu(z)]||? F? ( HVUE ;H> = 1, which
can be restated in terms of v(x):
Pl (x)
v(x)" (PPT)  v(x)F? ( > L. (6.7)
P to(z)

To obtain the discretized equation, we now replace each v, with the corresponding
difference approximation: v,(x) ~ a,U + b,, where b,’s linearly depend on the values of U

(and possibly of VU for higher order schemes) at the mesh points &; and .
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Remark 6.2.1. The simplest first order finite difference approximation is obtained by
choosing
ar = 1/lle —zjll; b= —Ulz;)/||z —z;l;

ay =1/[|e —zkll; b2 = —U(zs)/||2 — @]

For convenience, let Q@ = (PPT)~! and use v(z) ~ w(x) = Ve xp(®)a +b. Then the
discretized version of Eqn 6.7 can be used as an equation for the upwind-update-from-a-
single-simplex Vz; @y, ()

P lw

((07Qa) (Voyel@)” + (a7 Q0)Va iy (2) + 67 Q0)) P2 () =1 (68)

Remark 6.2.2. In the isotropic case, the analogous equation was just a quadratic (see
section 3.4.3). The equation 6.8 is a more complex non-linear equation, since w(x) also de-
pends on Vg, z, (z). In general, this equation will have to be solved approximately and the
overall efficiency of the method will also depend on the iterative numerical method used to
solve equation 6.8. Since these iterations are generally unavoidable, we will consider solving
this equation as a single operation in the further analysis of computational complexity.

We note that the iterative zero-finding required to compute Vg ; a4, () is local (i.e., Vz; z (@)
can be computed independent from any other Vg, z;(%)) and, thus, should not be con-
fused with the iterations necessary to solve a coupled system of non-linear equations (such

as 2.27) simultaneously.

6.2.2 Upwinding criteria

By indirections find directions out.

WILLIAM(?) SHAKESPEARE(?) (1564(?) - 1616(?))
Polonius’ motto, "Hamlet,” act II., (66).

We need to ensure that the value of Vg ; 2 (z) computed from equation 6.8 is truly
upwind, i.e., that the characteristic for the mesh point  lies inside the simplex zz; x1.? The
approximate gradient P! (ij,m k(@)a + b) can be used to compute an approximation to

the characteristic direction a(x). Section 6.1 illustrates how this mapping of Vu to a (or

9As shown in section 4.1, this is different from ensuring that the gradient points from that simplex: the
gradient lines of the viscosity solution need not coincide with the characteristic lines of the Hamilton-Jacobi
PDE for the anisotropic problems.
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w to @) can be performed analytically in R?; analogous formulas can be devised for higher
dimensions.

For R™, the requirement that the characteristic direction should point into the sim-
plex x; ... &, is equivalent to the condition that all the elements of the vector (P*)~!a(z)

should be positive.

Remark 6.2.3. The necessity to impose upwinding criteria stems from the fact that the
finite differences update procedure (section 6.2.1) is based on approximating the gradient.
The control-theoretic update formula 4.7 is based on solving the local optimization problem
directly (i.e., an approximate optimal control within a given simplex is found); thus, no

additional upwinding criteria is necessary.

6.2.3 Combined upwind update formula

The unfortunate feature of the upwinding criteria described above is that they are
based on the approximate rather than the exact characteristic direction. It is possible that,
due to the approximation error, an upwinding criterion will not be satisfied even though
the true characteristic for the mesh point « lies inside the simplex zxjxzg. If that simplex
is small enough, this can happen only when one of the elements of the vector (PT) la(z)
is close to zero, i.e., only when the characteristic direction almost coincides with (—Py) or
(—P2). That corresponds to the situation when U(x) can be computed based on either
U(xj) or U(xg). Thus, we define the “one-sided-update” formula in the manner consistent

with the control-theoretic perspective:
i — z|]
Ti-x
F (= 7=57)

So, the final formula for the upwind-update-from-a-single-simplex becomes

Ve, (x) = + U(z;). (6.9)

p

solution of Eqn 6.8 if P; and Ps are linearly independent
and the upwinding criteria are satisfied;

Vaja,(T) =

\ min (V;L-j (x), Vi, (:L')) otherwise.
(6.10)
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Using the finite difference update formula 6.10 instead of the formula 4.7 in the
algorithm described in section 4.3, we obtain a new Ordered Upwinding Method for solving
the front expansion problem (Hamilton-Jacobi PDE 3.2). In fact, this defines a whole
family of such methods, since different upwind finite difference operators can be used to

approximate w,(x) in equation 6.7.

We note that the resulting methods

e are “single-pass” and have the same computational complexity as the method intro-

duced in section 4.3;

e work equally well on acute and non-acute triangulated meshes (no additional splitting

section construction is required for the non-acute meshes);

e are applicable for a general anisotropic optimal trajectory problem described in section

2.2.

e can be easily extended to R™ and manifolds (the generalizations of the mapping n +—

a, of equation 6.7 and of the upwinding criterion are obvious).

Remark 6.2.4 (Convergence). As of right now we do not have a proof of convergence for
these methods. We rely on general convergence considerations (see the remarks following the
proof of theorem 5.2.1) and on the numerical evidence. In all of our numerical experiments
the numerical solution U produced by these methods converges to the viscosity solution
of the original PDE. The rate of convergence depends on the particular finite difference
operators used to approximate w,(2) in equation 6.7.

More information on the efficiency of these methods can be found in Chapter 7.



94

Chapter 7

Efficiency, Alternatives,

Limitations

Idealism is fine; but as it approaches reality, the cost

becomes prohibitive.

WiLLiaMm F. BUCKLEY, JR.

An efficient implementation of the described numerical methods for the anisotropic
optimal-trajectory and front-propagation problems requires dealing with several algorithmic
issues. Storing and sorting the current AcceptedFront, for example, has to be implemented
rather carefully! to enable efficient search for the “AcceptedFront neighborhood” NF(z)
for every Considered point . The inverse operation (searching for all Considered x
such that Z € NF(2) is another major component of the implementation. Efficient use of

data structures allows us to construct an algorithm with the computational complexity of
O(YTM log(M)).

7.1 Two update formulae:
trajectory approximation vs. upwind finite differences.
The connection between a particular class of anisotropic front propagation and optimal

trajectory problems allows us to build both control-theoretic and hybrid (finite differences

based) single-pass methods. On a fixed mesh X, the computational complexity of these

!This is particularly true for the implementation of the method in higher dimensions.
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methods will be the same. However, the overall efficiency of each program will be affected
by the chosen upwind-update-from-a-single-simplex formula. The optimal choice depends
on the particular speed functions F' and f and on the details of implementation.

Recall that the control-theoretic approach requires performing a local minimization
at each mesh point (Eqn 4.7), whereas the finite differences upwind update formula requires
finding the roots of the non-linear Eqn 6.8. Sometimes one of these (but not the other) can
be performed analytically and, thus, leads to a more efficient program. Generally, however,
both the minimization and the root-finding have to be done approximately and the overall
efficiency depends on the particular numerical method used to compute the approximate
update.

It should also be noted that the above complexity and efficiency discussion is
limited to finding a numerical solution on a fixed grid. The speed of convergence (of the
numerical approximation U(x) to the viscosity solution u(x) as the grid is refined) is a
separate issue. Thus, the availability of the higher order accurate upwind update formulas

is a significant advantage of the hybrid approach.

7.2 Heuristic techniques

The first time, it’s a KLUDGE!
The second, a trick.

Later, it’s a well-established technique!

A fundamental principle of software engineering.

7.2.1 Heuristic Techniques: “Update Relaxation”

In the algorithm described in section 4.3, there are two different situations when the tenta-

tive value V() is recomputed for a Considered point x:

e V(x) is first computed using the entire NF(z) at the moment when x is added to

Considered,

e V() is then recalculated from at most 2 simplexes every time the newly Accepted

mesh point Z belongs to NF(x).
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If the boundary condition for the PDE is nearly constant (i.e., if ¢ < ¢1 + hKj,
where h is the diameter of the triangulated mesh), Lemma 5.1.4 shows that the AF will also
approximate the level set throughout the execution of the algorithm. On the other hand,
Lemma 2.2.11 shows that the optimal trajectory for a intersects a level set at some point
& such that

|& —z|| <di T,

where d; is the distance from x to that level set. This means that if AF were exactly the
level set, the initial evaluation of V' (2) would capture all the necessary information about
all the potential characteristic directions for x; thus, the further re-evaluations of V(x)
would not be necessary. Since AF is only approximating the level set, capturing all the
necessary directions requires “widening” the set NF(z). Carefully combining Lemmas 5.1.4
and 2.2.11, we can show? that all the characteristic directions are still covered if NF(z) is
«

taken to be two times “wider”:

ﬁ‘(w) = {xjxr € AF | 3T on xjzy s.t. [|& — x| < 2RT}.

The numerical experiments indicate that a much smaller “widening” (by a single h) is

3. This provides for a substantial speed up of the algorithm since no

sufficient in practice
subsequent recomputations of V (x) are necessary.

Furthermore, an additional update relaxation can be used with the hybrid methods
if the boundary condition for the PDE is nearly constant. In the initial computation of V' (x)
it is often not necessary to consider the entire NF(z). We can stop as soon as we found
zjrr € NF(x) such that Vg; 2 () satisfies the upwinding conditions (see section 6.2.2).
The viscosity solution u of Hamilton-Jacobi PDE is Lipschitz-continuous, and, therefore,
Vu exists almost everywhere. As shown in section 6.1, if u is differentiable at the point
x and the vehicle’s speed profile p = f(x, ) is strictly convex, then there exists a unique

optimizing control a(x). Thus, there should not be multiple simplexes in NF(x) producing

the updates which satisfy the upwinding criteria®.

2Strictly speaking, Lemma 2.2.11 applies only to the viscosity solution u rather than the numerical
solution U. But that is why this is a heuristic technique and not a provably convergent numerical method....

3This is not surprising since the upper bounds in Lemmas 5.1.4 and 2.2.11 are derived for the worst case
scenario using the global anisotropy coefficient Y.

“The above argument cannot be applied near the shocks. Fortunately, the larger local approximation
errors committed near the shock do not affect the stability of the algorithm since those errors are not
propagated: the algorithm tracks the characteristic directions, and the characteristics might run into a
shock, but never originate from the shock.
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For a fixed grid X, the numerical evidence suggests that the

‘relaxation” signif-
icantly improves efficiency of the program. As the grid is refined, however, the numerical
solution obtained by the “relaxed” scheme converges to the viscosity solution slower than
the numerical solution computed by the “full-update” scheme. Nevertheless, the rate of

4

convergence of the “relaxed” and “full-update” schemes seems to be the same.

7.2.2 Heuristic Techniques: “Lifting-to-Manifold”

As described in section 3.5, some non-Eikonal Hamilton-Jacobi equations in the plane can
be restated as Eikonal equations on certain manifolds. This statement can be revisited now
from the control-theoretic perspective.

Consider an Eikonal equation on a smooth manifold z = g(z,y). The Eikonal
equation corresponds to an isotropic speed function f and, therefore, at every point on the
manifold the vehicle’s speed profile is a circle. Since the Eikonal equation is considered in the
intrinsic manifold coordinates, the vehicle’s speed profile “lives” in the manifold’s tangent
plane; thus, its projection onto the z = 0 plane is an ellipse. In Chapter 4 we have shown
how the original Eikonal problem on the manifold can be replaced by the corresponding
anisotropic optimal trajectory problem in the z — y plane.

Discussion in section 3.5 proceeds in the opposite direction: it is observed that
some anisotropic problems in the plane can be restated as the equivalent isotropic (Eikonal)
problems on certain manifolds. The Fast Marching Method can then be applied to solve
the latter (Eikonal) problems on the unstructured meshes approximating the corresponding
manifolds. The control-theoretic reasoning reveals a necessary condition for this substitution
to be possible: the vehicle’s speed profile in the original anisotropic problem has to be an
ellipse at every point. This is not a sufficient condition; there is also an issue of the “equality
of mixed partial derivatives” of g. It is easy to show an example of optimal trajectory
problem where f is smooth and the vehicle’s speed profile is an ellipse everywhere, yet
there exists no manifold z = g(z,y) corresponding to it.

Since the vehicle’s speed profile p = f(x,0) is an ellipse, the corresponding
anisotropy coefficient is

T é length of the bigger semi-axis of the ellipse

"~ fi  length of the smaller semi-axis of the ellipse’
Thus, the above described “lifting-to-manifold” technique can be interpreted as a reduction

of the anisotropy coefficient.
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Of course, if this substitution is possible then the general method is not needed
since the problem can be efficiently handled by the original Fast Marching Method on the
unstructured mesh. However, even if the problem is not reducible to the Eikonal equation on
a manifold, it may still be possible to find a function g such that the biggest speed/smallest
speed ratio will be much smaller on the manifold z = g(z,y). This can clearly affect the
efficiency of the program since the computational complexity of the method is proportional

to Y.

Remark 7.2.1. We note that the Ordered Upwinding Methods described in chapters 4
and 6 can be used on any unstructured mesh. The only part of the program which needs
to be modified to use the method on meshes approximating manifolds is the algorithm for

sorting and searching the AcceptedFront.

Finding the optimal manifold can prove to be as hard as the original problem,
but any (heuristically found) g(z,y) which reduces the T will improve the performance. A
substantial amount of preprocessing can often be justified: for example, in cases when one
has to solve numerous optimal trajectory problems with the same running cost function,

but with the different boundary conditions.

7.2.3 Heuristic Techniques: using local anisotropy coefficient.

So far we have always used the global bounds on the speed function
0< Fy SF($,p) < Fs,
for all p and . We now define the local bounds on F,

F; = min F F: = F
1(.’13) Ir)%lsr,ll (map)a Q(m) ]r)n€a:9)§ (map)a

and the local anisotropy coefficient Y(z) = ?fg;

We note that many of the Lemmas stated in Chapter 2 for the value function u(x)

in terms of F; and F, can be restated in terms of Fj(x) and Fh(x). Most importantly,
this is true for the Remark 2.2.23, which establishes a bound on the angle between the
characteristic and gradient directions. Thus, it is also possible to build the numerical
method using Y (x) instead of T in the definition of NF(x). We also note that if F' is

smooth and the maximum/minimum in defining F; () and Fy(x) are taken not just at the
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point but over some closed ball B centered at x, then the resulting algorithm provably
converges to the viscosity solution. (Indeed, for small enough h, NF(2) C B even if N F(x)
were defined using the global anisotropy coefficient T.)

This observation leads to a substantially more efficient algorithm because, for the
front propagating in a strongly inhomogeneous medium, the global anisotropy coefficient T

can be much larger than supgcq Y(x).

7.3 Alternatives

Here we discuss two other approaches to the front propagation problems and com-

pare them to the single-pass methods introduced in previous chapters.

7.3.1 Causality for the grid-orientation dependent methods.

We now revisit the simple test problems considered in section 4.1. Recall that Tsitsiklis’
algorithm formulated for the isotropic problems is used there to compute the simplest
anisotropic front propagation. Our analysis in section 4.1 explains the reasons for the
algorithm’s failure to converge to the viscosity solution (Figure 4.1B). However, for some
anisotropic problems, a numerical solution obtained by an isotropic single-pass methods will
actually converge to the correct viscosity solution of the original Hamilton-Jacobi-Bellman
PDE.

The reason for the algorithm’s success in the computation shown in Figure 4.1A,
is the fact that, for this particular orientation of the ellipse, the characteristics happen to
lie in the same quadrant as the gradient lines. A criterion based on this observation was

introduced by Sethian in [46]:

Criterion 7.3.1 (Applicability of the Fast Marching Method). For a general static
Hamilton-Jacobi equation H(Vu,x) = 0, if the Hamiltonian H is approximated on a Carte-

sian grid by a consistent difference operator
Hij(Uijs Uie1,5, Uit1,5, Ui j—1, Ui, 2i4,5) = 0,

and if it is known that U;; depends only on the smaller values of U at the neighboring

points, then the Fast Marching Method can be used to compute U; ;’s efficiently.



100

Remark 7.3.2. In the context of upwinding discretizations, the above criterion is equivalent
to requiring that the characteristics and the (numerically approximated) vector (—Vu)
should lie in the same quadrant. Several sufficient conditions for a class of numerical
Hamiltonians to satisfy the above criterion were presented in [34]. For instance, the causality
property was proven in [34] for the Godunov-type upwinding discretization HS , provided
the original Hamiltonian H(Vu,x) has a special form H(Vu,z) = G(u3,u;), for some
function G. We note that, even for a relatively simple elliptical front propagation equation
4.3, this condition is satisfied only in the case when c¢; or ¢y is equal to zero, i.e., only

when the axis of the ellipse are exactly aligned with the grid coordinate directions. This is

precisely the situation illustrated by Figure 4.1A.

Originally, a significant part of our research was directed toward finding the dis-
cretizations satisfying the criterion 7.3.1. We have discovered, however, that this approach

is often impractical due to the following reasons:

e Whether or not the criterion 7.3.1 is satisfied depends upon a particular grid orien-
tation. Indeed, the two test problems in Figure 4.1 are actually the same (modulo a

rotation by 45°), yet only one of them satisfies the criterion.

e For any anisotropic problem, there are infinitely many grid orientations such that
the criterion is not satisfied. If an angle between the characteristic and the gradient
line is not zero, then any grid line lying inside that angle will violate the criterion.
Correspondingly, the bigger the anisotropy coefficient Y is, the harder it is to find the

grid orientation satisfying the criterion.
e The criterion is infinitely sensitive to grid perturbations.

e If the criterion is not satisfied, the numerical solution does not lose stability under

grid refinement. In other words, when it does not work, it is not immediately obvious.

e [f the criterion is not satisfied even at a single grid point, the numerical solution need
not converge to the viscosity solution. The criterion 7.3.1 is the basis for determining
the order for computing the values of U. Computing even one of them from a wrong

quadrant can greatly affect the ordering of the remaining computations.

e For many anisotropic problems, the criterion cannot be satisfied for any choice of the

grid directions. Indeed, if the angle between gradient lines and the characteristics is
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sufficiently wide, and if the medium is substantially inhomogeneous (i.e., if the speed
f(x,a) varies significantly in different parts of €2), then any Cartesian grid might

violate the criterion 7.3.1 for some grid point € X.

As a result, we have chosen to concentrate on a family of robust single-pass methods, which

are independent of the grid choice® and applicable to a wider class of control problems.

7.3.2 Level Set Methods

Level Set Methods, introduced in [35], rely in part on the theory of curve and
surface evolution given in [40, 41] and on the link between front propagation and hyperbolic
conservation laws discussed in [42]. They recast interface motion as a time-dependent
Eulerian initial value partial differential equation, and rely on viscosity solutions to the
appropriate differential equations to update the position of the front, using an interface
velocity that is derived from the relevant physics both on and off the interface.

In order to track the evolution of some curve I'; (as defined in section 3.1), the
Level Set Method uses a function ¢ : R? x R, + R such that ¢(z, 0) is the signed distance

from « to the curve I'j and

¢+ FVl = 1. (7.1)

This level set equation was first presented by Osher and Sethian in [35]. If ¢ is the
viscosity solution of equation 7.1, then the zero level set of ¢ corresponds to the position of
the curve I'; at all times:

H(x,t) =0 & xely.

The equation 7.1 is discretized using upwinding finite difference operators. The resulting
discretization is consistent and monotone. Such schemes were proven to converge to the
viscosity solution by Crandall and Lions in [16].

This “initial value” formulation (leading to the time dependent Hamilton-Jacobi
equation 7.1) has an important advantage when compared to the “boundary value” formu-

lation (leading to the static Hamilton-Jacobi equation 3.2). It can be used on a much wider

SOf course, it is just the fact of convergence that is independent of the grid choice for our methods; the
speed of convergence is certainly influenced by the choice of the grid and its alignment with the shock lines;
see the numerical experiments in section 8.1.1, for example.

In fact, if the computational mesh is not fixed due to some application-specific reasons, the convergence
of our single-pass methods can be further improved by using the computed characteristic information to
dynamically add the mesh points inside the AF, wherever the shock is suspected.
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class of problems: the function F' can change sign and the Hamiltonian H (V¢, ) = F||V ||

does not have to be convex.

Remark 7.3.3. In [46] it is recommended that all problems, where F' depends on the orien-
tation of the front should be framed as “initial value” problems. The reason being, that the
classic Fast Marching Method (proposed as a tool for solving the “boundary value” prob-
lems) could not be used in anisotropic cases. The general single-pass methods described in
the preceding chapters do not have that restriction. Therefore, for the first order Hamilton-
Jacobi equations, the “boundary value” formulation can be used efficiently, provided that

F' is smooth, bounded away from zero, and the Hamiltonian H is convex.

A naive implementation of the Level Set Method (as described in [35]) will be
very inefficient for this problem: all of the grid points will have to be updated at each time
step. A clever observation (that it is only necessary to track the evolution of a few level
sets close to zero) enabled Chopp to formulate the “Narrow Band” version of the Level Set
Method [13], which was extensively analyzed by Adalsteinsson and Sethian [1], and used in
numerous applications [46].

Even though this method is much more efficient it is still a subject to the CFL
condition, namely if 0 < F; < F < F, then AtFy, < Az. Suppose the “Narrow Band”
version of the Level Set Method is used on an m X m uniform Cartesian grid, and the
narrow band is k£ grid points wide. The computational complexity of one time-iteration in
the narrow band is O(mk). At the same time, F} controls the upper bound on the number
of time-iterations after which the zero level set will pass through every grid point and will
leave the computational domain. Combining this bound with the CFL condition and adding
the cost of narrow band re-initializations, we obtain the overall complexity of this algorithm
as O(m?27Y log(mk)).

This complexity is asymptotically comparable with the complexity of Ordered
Upwinding Methods for the boundary value formulation of the front propagation problem.
However, the overall efficiency of those methods is still much better due to the following

considerations:

e The initial value formulation requires forward-integrating in time the function ¢. The
approximation error associated with this numerical integration affects the quality of
the numerical solution for the front propagation problem on a particular grid. Thus, it

also affects the speed of convergence of the numerical solution under grid refinement.
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e As described in section 7.2.3, for the front propagating in a strongly inhomogeneous
medium, the use of local anisotropy coefficient Y () significantly reduces the com-
plexity of the single-pass methods. However, the complexity of the Level Set Method
is still controlled by the global anisotropy coefficient T, which can be much larger

than the supgpco T(x).

Finally, we note that the above discussion of the efficiency was based on comparing the
asymptotic order of the methods’ computational complexity. In practice, the Ordered
Upwinding Methods are usually much faster than the Level Set Methods. A detailed descrip-
tion of various extensions of the Level Set Methods as well as a discussion of applicability

to more general front propagation problems can be found in [46].

The only way of finding the limits of the possible is by
going beyond them into the impossible.

ARTHUR C. CLARKE

7.4 Limitations (a.k.a. Future Research)

We conclude this chapter by listing the applicability limitations of our single-pass methods
described in chapters 4 and 6.

e The Hamiltonian has to be convex.

e The speed functions for the anisotropic front propagation and optimal trajectory

problems have to be bounded away from zero.
e QOur current proof of convergence requires the continuity of the speed function.
e The rate of convergence of the methods under mesh refinement is not proven.
e The complexity of the methods in R" is proportional to T("~1),
e Our current implementation of the single-pass methods is inherently sequential.

e The methods have so far been used only for the deterministic optimal trajectory

problems.
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e Only the first-order PDEs can be currently treated, since the characteristic directions
and the finite speed of information propagation are essential preconditions for de-

coupling a system of discretized equations.

We already know that some of these limitations can be relaxed in practice using the heuristic
techniques described in section 7.2. We are currently exploring the applicability of Ordered

Upwinding Methods to other classes of static partial differential equations.
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Chapter 8

Numerical Experiments

In this chapter we will use single-pass methods to solve the front propagation and
optimal trajectory problems. The numerical experiments in section 8.1 will illustrate the use
of several versions of the Fast Marching Method to solve isotropic problems on triangulated
meshes in R? and on manifolds. In section 8.2 we will use the Ordered Upwinding Methods
introduced in chapters 4 and 6 to treat several non-Eikonal test problems from optimal
control, computational geometry, and seismology. While these examples are not as complex
as the real applications, each one of them illustrates the role that anisotropy plays in the

corresponding application domain.

8.1 Numerical tests: the Eikonal equation.

The practical importance of the single-pass methods for the Eikonal equation stems
from the multitude of isotropic processes fully described by this equation in a variety of
application domains. Tsitsiklis” algorithm and the related label-correcting methods were
used in many control-theoretic problems [7, 50, 10, 11]. Early applications of Sethian’s
Fast Marching Method included photolithography [44], a comparison with volume-of-fluid
techniques [25], and a fast algorithm for image segmentation [32]. Some of the more re-
cent applications of the Fast Marching Method include the problems in robotic navigation
[28], extension velocity computation [2], visibility evaluation [45], geophysics [39, 47], and
computational geometry [29].

Here we consider only two isotropic problems! illustrating the particular extensions

!These two experiments were taken from [48].
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of the Fast Marching Method described in Chapter 3.

8.1.1 Higher order Fast Marching Method.

We compare the performance of the first order accurate and the higher order
accurate implementations of the Fast Marching Method on a triangulated mesh. Both
methods are used on a uniform mesh to solve the Eikonal equation |[Vu(z)|| = 1 in R?. The
viscosity solution of this equation taken with zero boundary condition is the “distance from
the boundary” function. Two examples with shocks are considered: one where the shock
line occurs along the grid lines, and another where the shock line is not aligned with the grid.
Both the Ly and L, errors are computed on the grid. Note that the rate of convergence in
the Lo norm generally corresponds to the order of the difference approximations. However,
the rate of convergence in the L., norm might be lower (depending on the location of shocks
relative to the grid). This is due to the fact that the higher order approximations are
meaningful only where the solution is sufficiently smooth. Fortunately, viscosity solutions
are differentiable almost everywhere and no information emanates from the shocks. The
upwinding difference approximations ensure that the numerical solution U(2) mimics this
useful property of the viscosity solution; thus, the Lo norm convergence is not affected by
the larger errors committed near the shocks.

The tests are performed on a grid of equilateral triangles spanning the parallel-
ogram with the vertices at (0,0), (1,0), (.5,v/3/2), and (1.5,1/3/2). The exact values for
the distance are used in the narrow band of radius .1 around the initial points to start the

algorithm.

Figure 8.1: The uniform grid of equilateral triangles on a parallelogram.

We first use the Fast Marching Method to compute the distance from two vertices:
(0,0) and (1.5,4/3/2). The shock line runs along the edges of simplexes (along the shorter

diagonal of the parallelogram). The table in Figure 8.2 shows the errors under the mesh



refinement.

Grid | Lo Error | Lsg Error | Lo Error | L., Error
1st Order | 2nd Order | 1st Order | 2nd Order
212 0.00818 0.00753 0.01500 0.02161
412 0.00432 0.00142 0.00785 0.00559
812 0.00213 0.00024 0.00386 0.00130
1612 | 0.00108 0.00004 0.00195 0.00031
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Figure 8.2: First and “second order” computations of distance from two points. The shock line runs along

the edges of simplexes.

We now compute the minimal distance from the other two vertices: (1,0) and

(0.5,4/3/2). In this case the shock line is not aligned with the grid lines (edges of simplexes)

and it runs along the longer diagonal. The table in Figure 8.3 shows the errors under mesh

refinement. The Loy error is still second-order convergent for the second order scheme, while

its Lo error is lower order though still much better than the L., error of the first-order

scheme. This is to be expected: due to the grid alignment, the approximation is sometimes

performed across the shock lines which leads to the first order errors there.

Figure 8.3: First and “second order” computations of distance from two points.

Grid | Lo Error | Lsg Error | Lo Error | L., Error
1st Order | 2nd Order | 1st Order | 2nd Order
212 .00645 00533 01221 02034
412 .00339 .00117 .00642 .00644
812 .00165 .00022 .00315 .00203
1612 .00084 .00005 .00159 .00071

aligned with the edges of simplexes.

The shock line is not
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8.1.2 Computational geometry: the equidistant offsets.

In manufacturing processes it is often necessary to find the equidistant offsets on
a machine part. In the following example we use a triangulated mesh to approximate a
complex machine part and then apply the Fast Marching Method to compute the offsets
equidistant from the bounding box on that mesh (see Figure 8.4). This computation illus-
trates the splitting section constructions; the triangulation is obtained by mapping a regular
triangular mesh in the z — y plane onto the surface, creating a large number of obtuse and
near-degenerate triangles, including some with angles bigger than 160°.

501

a0

30

—20}

—30}

_a0}

_s50 L L L
-150 -100 -50 0

50 S~ i
el =100
-100 -i50

Figure 8.4: Fast Marching Method on a non-acute triangulated mesh.
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8.2 Numerical tests: the anisotropic problems.

8.2.1 Geodesic distances on manifolds.

The first test problem is to find the geodesic distance on a manifold z = g(z, y).
As described in [27] and [46], this can be accomplished by approximating the manifold with
a triangulated mesh and then solving the distance equation |[Vu|| = 1 on that mesh. Since
the latter equation is Eikonal, the Fast Marching Method can be used to solve it efficiently.
However, if one desires to formulate the problem in the z — y plane instead of the intrinsic
manifold coordinates, then the corresponding equation for u is not Eikonal. Indeed, in the
x —y plane, the manifold’s geodesic distance function u has to satisfy the equation 3.2 with

the speed function F' defined as:

1+ g2 cos?(w) + g2 sin?(w) — sin(2w
F(M,y):\/ g5 €08 () + g3 $in*() — gy sin(2) 1)

L+g; +g

where w is the angle between Vu(z,y) and the positive direction of the z-axis. The degree
of anisotropy in this equation is substantial, since the dependence of F' upon w can be
pronounced when Vg is relatively large?.

As shown in section 6.1, u can also be considered as a value function for the cor-
responding min-time optimal trajectory problem and must, therefore, satisfy the equation
2.24. The vehicle’s speed function f(a,z,y) can be defined applying the formula 6.5 to
the speed of front propagation F(w,z,y). However, it is even easier to obtain f from the
control-theoretic considerations. If the vehicle moving with the speed f(a,z,y) in the z —y
plane is just a shadow of another vehicle moving with a unit speed on the manifold, then this
vehicle’s speed profile is just an orthogonal projection of a unit circle from the manifold’s

tangent plane onto the x — y plane, i.e.,

M

f(a'axay) = (1 + (Vg(ac,y) : a)2)_ ) (8'2)

where a is a vector of unit length and f is the control-theoretic speed of motion in the

direction a (see sections 2.2.5 and 6.1 for details).

2The algorithm presented in [27] using the manifold-approximating mesh is more efficient for this problem;
here, it serves as a convenient test problem for the general anisotropic case: the numerical solution obtained
by the Fast Marching Method on the manifold is compared to the solution obtained by the “general” Ordered
Upwinding Method in the z — y plane. We note, of course, that only specific anisotropic problems can be
converted into Eikonal equations on manifolds; see [48] for details.
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As an example, we consider the manifold g(z,y) = .75sin(37z) sin(37y) and com-
pute the geodesic distance on it from the origin (see Figure 8.5). The anisotropy coefficient
for this problem is T = % = /32 +8172/(4v/2) ~ 5.1. The computations are performed

twice:

e using the control-theoretic Ordered Upwinding Method (Chapter 4);

e using the hybrid Ordered Upwinding Method (Chapter 6) with the first order differ-

ence approximations.

Refining the mesh and comparing the numerical results to the values of U computed directly
on the manifold, we observe the first-order of convergence for both general single-pass
methods. In Figure 8.5 we show the level sets of the numerical solution U obtained on a

regular mesh with 292 x 292 mesh points.

7

N

50 100

Figure 8.5: The geodesic distance from the origin on the manifold z = .75 sin(37x) sin(37y) computed
on the square [—.5,.5] X [—.5,.5] in the z — y plane.

8.2.2 Min-time optimal trajectory problem.

Our second example is a particular min-time optimal trajectory problem. Suppose

that a vehicle’s dynamics z(¢) in the square [—.5,.5] x [—.5,.5] is described by

Z () = a(t)+b(z(t)),
o
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where the advection velocity b : R? — R? is known and @ : Ry~ S; is the control. We
further assume that ||b(z,y)|| < 1 for all (z,y) € [—.5,.5] x [-.5,.5]. The optimal control
a(-) will minimize the time it takes for the vehicle to reach the origin from the point .
The value function u(z) corresponding to that minimal time is the viscosity solution of the
Hamilton-Jacobi-Bellman equation 1.6 with the boundary condition «(0,0) = 0. The speed
profile for the point @ is a unit circle displaced by the vector b(z,y) (see Figure 8.6, for

example). The corresponding speed function is

fla,z,9) =a-b+/(a-b)2—b-b+1, (8.4)
where the direction of motion is @ = -2+
la+b||

0.1r /)
/

- : X @
N
\
\
/ \
0.05} L
! \
! \
|
of * ¥
! I
\ /
-0.05- T
\ /
\ ’
L \ /
-0.15F S =
S
-0.2F
-0.2 -015 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Figure 8.6: The vehicle’s speed profiles for 8 different points on the circle.

$7 . . . .
Ifb(z,y) = IE y; then we can rewrite the Hamilton-Jacobi PDE satisfied by u(z,y)
b2 z,y
as follows:
(1—bH)u2 + (1 - b%)uz — 2b1bauguy — 2b1uy — 2bu, = 1,

w(0,0) = 0. (8:5)

As an example, we consider a particular advection velocity

—.9sin(4rx) sin(4dny) | =

Va?+y? y

b(IE,y) =
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The “anisotropy coefficient” for this problem is

F 1+ [[Vb(z, y)|l
= — = maXxX - ].9
F ey 1—|Vb(z,y)|

T

The calculations are performed using an Ordered Upwinding Method with the the
control-theoretic formula 4.7 for an update-from-a-single-simplex. In Figure 8.7 we show
the level sets of the numerical solution U obtained on a regular mesh with 96 x 96 mesh

points.

10 20

Figure 8.7: The value function for the min-time optimal trajectory problem. The vehicle’s speed profile
at every point (z,y) is the unit circle displaced by the vector b(z,y) = —2sinlirz)sin(iny)

\/m (z,y).

8.2.3 First arrivals in inhomogeneous anisotropic medium.

Finally, we include an example of the first arrival travel times computation with
applications to seismic imaging. We start with a computational domain which suggests
material layering under a sinusoidal profile. The computational domain is the square

[—a,a] X [—a,a], with layer shapes
. (mTE
C(z) = Asin (T +5) (8.6)

where A is the amplitude of the sinusoidal profile, m is the number of periods, and § is
the phase offset. The domain is split into n layers by the curves y;(z) = X (z) + b;, where
i=1,...,(n—1).

In each layer, the anisotropic speed at every point (x,y) is given by an ellipse with

bigger axis (of length 2F5) tangential to the curve C'(z) and the smaller axis (of length 2F})
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normal to the curve. F; and Fy are constants in each layer. Thus, the ellipse’s orientation
and shape depend on (z,y).

This leads to an anisotropic Hamilton-Jacobi equation of the form:

where the front propagation speed at every point (z,y) is given by the formula

1/2
(1+¢*)u + (1 + p*)uy — 2pquguy
. . ; 8.8
(Y, Uz, uy) 2( (1+9> + ¢*)(u2 +ul) ’ Y
with
2
2)°
P _ (#) i (7)
2 _
q 1+ (%(95)) :

Here, F} and F; are the ellipse semiaxes for the layer corresponding to the point (z,y).
These calculations are performed using the Ordered Upwinding Methods with the
the control-theoretic and finite difference formulae for computing an update-from-a-single-
simplex. Both methods produce numerical solutions converging to the value function of the
corresponding min-time optimal trajectory problem.
The equi-arrival curves shown in Figure 8.8 are obtained on a 193 x 193 regular

mesh using the following parameter values:

a=.5, A=.1225,
m=2;, =0,
and layer offsets b; = (—.25,0,0.25).

The max/min speed pair (Fy, F) for each layer is given in the figures. We note that in one

. . _ 3 _
of these examples the global anisotropy coefficient T = 5 = 15.

Remark 8.2.1. Since the speed function F' is discontinuous across the layer boundaries,
the standard viscosity solution results for the Hamilton-Jacobi-Bellman equation [16, 15]
are not directly applicable. Thus, our proof of convergence in Chapter 5 is not valid in
this case either. Nevertheless, the produced numerical solutions seem to converge to the
true value function of the corresponding control problem. This is not surprising since our
methods are based on approximating Bellman’s optimality principle, which is valid for a
value function u under much more general assumptions about the speed (or the cost) of

motion. See also remark 5.2.3 in Chapter 5.
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193 x193 193 x193

Figure 8.8: Seismic imaging test problem: equi-arrival curves in inhomogeneous, multi-layer medium.
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